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The Word-Gesture Keyboard: 
Reimagining Keyboard 
Interaction
By Shumin Zhai and per ola Kristensson

1. intRoDuCtion
Throughout human civilization, text has been an indis-
pensable channel of communication. Modern comput-
ers equipped with desktop keyboards have dramatically 
increased the ease and volume of text-based communica-
tion in the form of email, text chat, and Web posting. As com-
puting technologies expanded beyond the confines of the 
desktop, the need for effective text entry on mobile devices 
has been increasingly felt over the last two decades. Such a 
need has inspired both academic researchers and the infor-
mation technology industry in pursuit of effective text entry 
methods alternative to the ubiquitous desktop keyboards. 
Since at least the early 1990s, mobile text input research can 
be found in almost every human-computer interaction con-
ference. For example, a leading HCI journal dedicated an 
entire issue on text input in 2002.27 Some of the influential 
academic research results in the past two decades include 
the Unistroke letter set,13 optimized onscreen keyboard lay-
outs,12, 25, 29, 49 and soft keyboard error correction and preven-
tion14, 22 to name just a few (see more complete surveys in 
Kristensson,18 MacKenzie and Soukoreff,28 and Zhai et al.50).

To a very large extent, the design of text input method 
defined every major product in the evolution of modern 
mobile computing. As early as 1984, Casio released a wrist 
watch, the DB-1000, which had a capacitive touch screen 
with character recognition which enabled the user to oper-
ate the calculator or enter names and phone numbers into 
the databank, by using their fingertip to draw on the watch’s 
screen. Nine years later, the Apple Newton became one of 
the first high profile mobile computing products, to fea-
ture handwriting recognition as a text input method.43 The 
original 1996 Palm Pilot that successfully launched the PDA 
 (personal digital assistants) industry differentiated itself 
from previous products with a single-stroke but Roman-
letter like symbol set called Graffiti, that enabled hand-
written characters to be entered more efficiently and less 
error-prone. The BlackBerry smartphones set a trend in the 
industry for many years with a miniature physical keyboard. 
Many versions of Palm Treo and Windows Mobile smart-
phones followed and further propelled the trend of minia-
ture physical keyboards. These mobile devices also had a 
soft keyboard alternative, operated with a stylus on a resis-
tive touchscreen. However, it was not until 2007, with the 
launch of the Apple iPhone that the use of a finger-operated 
capacitive touchscreen and soft keyboard became a primary 
text input method, one which is now the dominant form of 
text input on smartphones and tablets.

At some level, it is relatively easy to invent a new text entry 
method. After all, a text input method is a coding system for 
text communication. There can be potentially an infinite 
number of possible ways to code text by spatiotemporal 
means, including Morse code and the great many diverse 
writing systems of the world. However, to develop a mobile 
text entry method truly acceptable to the mass consumer 
market is exceptionally difficult for many reasons.

First, since text input is one of the most intensive and fre-
quent human-computer interaction (HCI) tasks, speed is a 
very important consideration. Users are accustomed to fast 
keyboard typing on their own desktop or laptop keyboard.20 
A mobile text input method is ideally as fast as a desktop key-
board, or at least fast enough so the users do not have to defer 
text writing to a non-mobile setting.

Second, in order to gain wide adoption, a text entry method 
must impose minimal cognitive load on new users. This 
means that little or no learning should be required for users 
to start using a new text entry method. Most computer users 
have already invested time and effort in learning typing on 
Qwerty keyboard. A new method that requires even a fraction 
of that investment upfront is difficult for mass adoption.

Third, a successful new text input method should sup-
port development of proficiency – the ability to have per-
formance improvement toward higher efficiency through 
practice in use. Unfortunately, ease of adoption and effi-
ciency in user interface design are often at odds with each 
other due to having different cognitive foundations.45 The 
alternatives too often reduce to determining where the load 
resides: easy to start but inefficient ever-after, or hard to 
learn but highly efficient as (hard-won) skill is acquired.

Addressing these HCI challenges requires more than 
applying the basic HCI research methods of usability 
testing and design iteration. Since the late 1990s, we 
have taken a research approach to text input that com-
bines invention,16,21,46 cognitive analysis,46,47 human 
performance and statistical modeling,1,7,21 and design, 
development, and deployment.51 The result of this journey 
is a new paradigm that we call word shorthand gesture 

This article is based on Zhai, S., Kristensson, P.O. Short-
hand writing on stylus keyboard, Proc. ACM CHI 2003, 
97–104, Kristensson, P.O. Zhai, S. SHARK2: A large 
vocabulary shorthand writing system for pen-based 
computers, Proc. ACM UIST 2004, 43–52, and the authors’ 
other publications.15–17, 22, 23, 45, 47, 49–51
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gesture is analyzed by a statistical model and the most likely 
word (in this case fun) is selected and entered by the system, 
which optionally also displays alternative N-best candidate 
words (Figure 1).

Note that the meaning of “word” in a word-gesture key-
board lexicon is broadly defined. While most words can be 
selected from a natural language, some can also be tokens 
defined by arbitrary strings of characters, such as gmail.
com. Each such token in turn defines a word-gesture, or a 
token path, on the keyboard.

2.1. Gesture keyboard feasibility
The first question that may arise here is why the word-
gesture keyboard paradigm is possible at all, consider-
ing that most word gestures will run across letters that 
are not part of the word intended. Indeed, this challenge 
seemed to have prevented the attempt by Montgomery in 
the early 1980s32 toward establishing such a paradigm. 
Montgomery32 instead proposed to rearrange the keys to 
maximize the chance for a user to be able to wipe through a 
sequence of adjacent  letters that happen to make a word or 
a common word fragment without lifting.

However, this problem was not insurmountable. As 
Shannon36 observed and elegantly demonstrated in his clas-
sic paper on information theory long ago, there are strong 
statistical regularities in natural languages. For example, 

keyboard, or word-gesture keyboard  in this article. It is 
a re- imagination of the conventional key striking-based 
keyboard. The paradigm have been also known as 
 shorthand-aided rapid keyboarding (SHARK),21, 46 shape 
writer or shape writing,23, 33, 47 and can also be called ges-
ture, graph, stroke, trace, swipe, sweep, slide, or glide 
keyboard. This paradigm has not only been extensively 
researched in the academic literature15, 17, 19, 21, 23, 46, 51 but has 
also already been embodied in many products. To date, 
different implementations of this novel paradigm have 
been marketed by a number of companies under at least 
the following brands: ShapeWriter, SlideIT, Swype, T9 
Trace, FlexT9, and TouchPal on a great number of devices.

This article summarizes a decade-long academic research 
that led to the establishment of this input paradigm. 
We developed the basic concepts and initial prototype 
of a word-gesture keyboard from 2000 to 2002,16, 46 and 
took many more years to mature and deploy the technol-
ogy.21, 23, 50, 47, 51 The paradigm itself is still emerging and 
developing, with both necessity and opportunity for further 
technological advances and better user behavior and per-
formance understanding. We outline some of the future 
research directions at the end of this article.

2. theoRy, RationaLe, anD DeSiGn PRinCiPLeS  
oF WoRD-GeStuRe KeyBoaRDS
The basic type of input action on a traditional keyboard 
is striking an individual key. To do this well requires good 
tactile feedback.  On a touch screen, another type of input 
action is possible. Instead of a striking action, one can use 
a continuous stroke gesture to convey information. Indeed, 
it is compelling to use sliding gestures on a touch keyboard 
for functions such as DELETE or SHIFT.3 In early 1980’s, 
Mont gomery 32 conceived the idea of using sliding gestures 
on a touch keyboard to enter characters. He designed a “wipe 
activated” keyboard with a flat touch sensitive surface. The 
positions of the letter keys were carefully arranged to make 
consecutive letters commonly appear in words connected 
on the keyboard. The user can slide across adjacent letters 
to enter a string of letters. Montgomery believed such con-
tinuous “wiping” actions are more efficient hence “bringing 
manual input into the 20th century” from 1860’s Qwerty key-
board. Perhaps ahead of its time, Montgomery's pioneering 
work had very limited impact, with only a few citations in the 
literature. Without further research or actual deployment, it 
was also unclear how easy or efficient it was to use such a key-
board which required detecting or remembering connected 
sequences of letters in order to wipe through them.

Stemmed from our work on optimizing stylus tapping 
keyboard,48 we envisioned the paradigm of word shorthand 
gesture keyboard for touchscreen devices. On a word- gesture 
keyboard, instead of tapping individual keys or wiping 
through a sequence of letters connected on the keyboard, 
the user can write each and every word in a lexicon via a word 
gesture (also referred to as sokgraph—short hand on key-
board as a graph50). A word gesture approximately traces all 
letters in the intended word, regardless if they are adjacent. 
For example, to write the word fun a user touches the f key, 
slides to the u key then the n key, and lifts up. The resulting 

Figure 1. ShapeWriter on the iPhone is an example of a word-gesture 
keyboard.
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some character sequences are more likely than others and 
most simply don’t exist as legitimate words. The fundamen-
tal conceptual breakthrough to the word-gesture keyboard 
paradigm is that valid letter combinations form a finite set 
that can be captured in a language model, created by, for 
example, mining emails, blogs, and the Web. A very simple 
form of a language model is a lexicon—a list of all permis-
sible words. In the case of English, a lexicon size of 20,000–
100,000 words would be sufficient for most users. The words 
in a lexicon can be represented geometrically on a given key-
board layout as word gestures and matched against users’ 
input gesture. Later in this paper, we explain how to effi-
ciently classify and recognize such gestures.

Of course, an individual user may occasionally still need to 
write rare names and jargons, email addresses, or passwords 
that are out of vocabulary (OOV). Since a gesture keyboard 
enhances, rather than replaces, a conventional touchscreen 

keyboard, OOV letter sequences can always be entered by 
typing the individual letter keys. If these OOV sequences are 
frequently used then they may be added to the system’s list of 
recognized words, either manually or automatically.

Occasionally, two words may share exactly the same 
starting letter, ending letter and trajectory in between 
(e.g., tip and top on Qwerty), causing a conflict. An analy-
sis showed that of a 20,000 words lexicon had 537 conflicts 
on the Qwerty layout. This number reduced to 493 on the 
ATOMIK (see Figure 2) layout49 of which 283 were Roman 
numerals.21 Because they are rare, these conflicts can be 
addressed by manual selection from the alternative N-best 
suggestions, or automatically according to  word context.

Having understood the technical feasibility of word- 
gesture keyboards, a considerable amount of research was 
still needed in understanding the human performance and 
user experience factors involved in using them. This required 

Figure 2. Word-gesture keyboards can also work on alternative keyboard layouts. Shown here are ShapeWriter atomiK mode on the iPhone (circa 
2008 top left), ShapeWriter on a Windows tablet with the atomiK layout (circa 2005, top right), and an illustration of the atomiK layout (bottom).
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control laws. The CLC model can make baseline predictions 
of the time efficiency of different gesture sets according to, 
for example, keyboard layout.

Auto word ending and spacing: Because a word-gesture 
keyboard works at the word level, there is a natural separa-
tion between words: each time a user lifts the finger from 
the touch surface, a word and a space are entered. According 
to our calculation based on the American National Corpus 
(http://www.anc.org/), the average length of an English word 
is 4.7 letters. This means that one in every 5.7 key strokes 
when typing English texts is devoted to entering spaces (or 
other punctuation keys). Not having to enter a space charac-
ter after each word is another efficiency advantage of a ges-
ture keyboard.

Error-tolerance: Since a word-gesture keyboard can per-
form error- tolerant gesture recognition, users do not have to 
precisely slide though every letter in the intended word. The 
input stroke only needs to be closer to the intended word 
gesture than other distractors as judged by the recognition 
algorithm. Error tolerance allows the user to cut corners, to 
be inaccurate but fast.

One finger operation: However, in comparison to two-
handed typing (with ten fingers or two thumbs on the key-
board), a gesture keyboard also has a speed disadvantage. 
This is particularly true when the keyboard layout is the 
conventional QWERTY on which consecutive letters of a 
word tend to alternate between the left and right side of the 
keyboard. With two handed-typing, when one hand strikes 
one letter the other hand can, to some degree, move towards 
the next letter in parallel.9 Such parallelism with bimanual 
typing is one speed advantage a gesture keyboard currently 
lacks.

2.3. ease-of-use
For many reasons, a gesture keyboard is also easy to use. 
First, typing on a keyboard is a familiar text input method to 
most, if not all computer and smartphone users. A gesture 
keyboard can be viewed as a conventional touch keyboard 
that also affords gestures. Importantly, every gesture key-
board is still a tapping keyboard. Simultaneously, enabling 
tapping and gesturing behavior, without requiring even a 
switch, a gesture keyboard imposes a low adoption entry 
threshold.

Second, drawing or doodling is a fun and easy action that 
even children enjoy doing. A gesture is in some sense a more 
appropriate action than serial tapping on a conventional 
keyboard.

Third, the user does not have to have learned any gestures 
before using a word-gesture keyboard. As a beginner, the user 
simply slides the finger from one letter to another, driven by 
visual guidance to the next letter key on the keyboard.

When using a bare finger rather than a sharp stylus to 
operate a gesture keyboard, the fact that the finger is wider 
than the virtual keys on smartphones is an impediment to 
ease of use. For some beginners, this “fat finger” problem is 
particularly challenging because they may doubt that the let-
ter under the finger is the correct letter. To address this con-
cern, a version of the SHARK gesture keyboard for the Tablet 
PC had two keyboards, a sensing keyboard and a “phantom” 

conceptual analysis, controlled experiments, prototyp-
ing, and ultimately product deployment. In what follows, 
we first present some of the basic conceptual dimensions, 
rationales, and principles of gesture keyboards. Some of these 
were previously articulated in Zhai and Kristensson,46, 47 but 
the following is synthesized with the benefit of hindsight 
and experience.

2.2. efficiency
One continuous movement: In comparison to tapping-based 
touchscreen keyboards, gesture keyboards do not require 
up and down movements for each letter. Instead an entire 
word involves only one continuous movement. Anecdotal 
evidence from centuries of stenography research has 
pointed out the impeding effect on speed performance of 
repeated lifts.30 From everyday writing, we also know that 
when we write fast, we write cursive—meaning multiple 
letters are linked as one continuous stroke. To a degree, 
the word gestures on a gesture keyboard in effect become 
a modern form of shorthand for words, akin to European 
shorthand systems.30 Note that minimizing the number of 
separate actions was the main motivation in Montgomery’s 
wipe-activated keyboard32 and single-stroke shorthand for 
characters, such as Unistrokes, Graffiti, and their Roman 
antecedent, Notae Tironianae, developed by a slave of 
Cicero, Marcus Tullius, in 63 BC.5 

The speed advantage of a single-stroke word gesture input, 
as opposed to single-finger (or stylus) tapping of individual 
letters of the same word, can also be understood in motor 
control modeling terms. Tapping individual letters in a 
word can be viewed as a sequence of discrete target pointing 
tasks, each can be modeled by Fitts’ law.11

tk,k + 1 = a + b ID (1)

, 1
2 1k kD

ID log
S

+ 
= +  

  

(2)

where tk,k + 1 is the time duration from tapping the kth letter 
(key) to the (k + 1)th letter in the word; Dk,k + 1 is the movement 
distance from the kth letter to the (k + 1) letter; and S is the 
size of the target key. a and b are two constants of Fitts’ law. 
ID is called Fitts’ index of difficulty, measured in bits.

Similarly, as a baseline a word gesture on a keyboard can 
be viewed as a “continuous crossing” movement sweep-
ing through a sequence of “goals”. Each goal is a letter key 
needed in the word. According to the study of Accot and 
Zhai,1 each goal-crossing task in this continuous crossing 
process also obeys Equation (1) but is faster (due to different 
a and b parameters) than tapping on the same sized targets 
as long as ID is less than 4 bits. On a keyboard layout such as 
Qwerty, the maximum ID (from one end of the keyboard to 
another) is less than 4 bits since each row of the keyboard 
has a maximum of 10 keys.

Rick33 presents another Fitts’ law-based model of word-
gesture keyboard that takes the angles between different 
segments of the stroke into consideration. Cao and Zhai7 
developed a time complexity model of gesture strokes based 
on the corners, line segments, and curvatures (CLC) in a 
stroke and each type of elements is in turn modeled by motor 
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keyboard. When the user’s finger or stylus moves on the 
sensing keyboard, the stroke ink that moves in parallel is 
displayed on the phantom keyboard that is not obscured 
by the hand. However, such a design was in our experience 
proven unnecessary after the first large-scale word-gesture 
keyboard (ShapeWriter WritingPad) release on the iPhone. 
Most users quickly gained confidence, stopped worrying 
about the letter underneath their fingertip, and realized they 
only need to approximately cross the intended letters.

2.4. Progression from ease to efficiency
One of the most important rationales of gesture keyboards 
lies in facilitating transition from ease to efficiency.

Writing with a gesture keyboard is a mixture of two types 
of behavior. The first type, used by beginners or for unfamil-
iar words, is letter-to-letter tracing. Such a process is visually 
guided, closed-loop, and relatively slow. This visual recognition-
based process is easy because it does not require any prior 
memory. The second type, used by proficient users for 
familiar words, is memory-driven gesturing. This process in 
 contrast is recall-driven, open-loop, efficient, and fast.

The two types of behavior are two ends of a continuum. 
Our main behavioral theory of word shorthand gesture key-
boards is that their use automatically shifts from the ease 
end (visual tracing) to the efficient end (recall gesturing) 
(Figure 3).

There are many factors facilitating such a shift. First, at 
both ends of the continuum or anywhere in between, the 
movement pattern is the same. The consistent movement 
pattern for the same word helps the shift from visual trac-
ing to recall gesturing. On this point, we drew inspiration 
in Kurtenbach and Buxton’s work on “marking menu” 
design,24 although a direct application of marking menus to 
text input did not necessarily result in a successful text input 
method.40 With marking menus the user can either wait for 
a visual radial menu to pop up, and then slide to the desired 
slice, or make a gesture in the same direction without the 
visual menu display if the angular gesture is remembered. 
As observed by Kurtenbach and Buxton,24 the consistent 
movement patterns in the two distinct states of marking 

menus facilitate novice to expert mode transition in mark-
ing menu use. The basic psychology literature on automatic-
ity in human behavior also shows that the key to developing 
skilled, low attention, automatic behavior lies in consistent 
mapping from stimuli to response.35, 38

In using a word-gesture keyboard, the production of 
movements increasingly changes from focusing on indi-
vidual letters to connecting multiple letters into a word ges-
ture. In other words, it shifts from smaller chunks to larger 
chunks in human performance.4, 31 Chunking is another fac-
tor that facilitates the shift from tracing to gesturing.

In regular keyboard typing, users also develop mental 
word pattern representations.44 This is evident from the fact 
that users type common words faster than random letters 
sequences. However, in a gesture keyboard the word pattern 
representation is a fluid continuous stroke and visually dis-
played, which plausibly ingrains the word patterns in users’ 
memory much faster than learning common motor control 
schema for ten-finger typing.

Further research is required in understanding user 
performance and behavior in word-gesture keyboarding, 
particularly from the perspectives of two separate psycho-
logical research fields: human memory and human motor 
control. In general, human memory research distinguishes 
memory into declarative memory and procedural memory.39 
Declarative memory is about knowledge and facts and is 
explicit. Procedural memory on the other hand is about 
skills and how to do things, particularly body movements. 
Procedural memory is unconscious or implicit. The word-
shorthands in gesture keyboarding are likely to involve both 
declarative and procedural memory, shifting in contribution 
from the declarative side to the procedural side and falling 
below conscious awareness. Anecdotally we observed that 
experienced users often were not explicitly aware the token 
paths on the keyboard of the words they gesture. Similarly, 
motor control and learning research suggests that voluntary 
actions are initiated by a conscious goal, but the perceptual-
motor integration, sequencing, spatial representation and 
movement dynamics are outside of awareness.41 Procedural 
memory and motor skills are typically long lasting. Skills 

quick quick

Figure 3. illustration: word-shorthand gesture keyboarding is expected to shift from primarily visual-guidance driven letter-to-letter tracing 
to memory-recall driven gesturing.
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such as bicycling or skiing, once learned, are hardly ever 
forgotten.34 It is our experience that we could still remem-
ber and write word gestures proficiently on a unique layout 
(ATOMIK) that we had not seen or used for months or even 
a year.

Importantly, we do not expect the users to gesture every 
word without looking at the keyboard. Due to the Zipf’s 
law effect, a small number of words are used disproportion-
ally frequently and their stroke patterns are memorized 
early. Longer and less common words are typically made of 
common fragments whose shapes can be quickly remem-
bered. Even proficient gesture keyboard users are likely to 
use a mixture of visual guidance from the keyboard and 
memory-driven production of gesture shapes. The degree 
of each depends on experience with the specific words. We 
will show empirical findings in word-gesture memory and 
learning later in the paper. An important word-gesture key-
board property is that it does not force the user into either 
“mode”. The user gradually progresses from the easy end to 
the more efficient end in use. In this sense, a word-gesture 
keyboard is a “progressive user interface.”45

3. GeStuRe ReCoGnition
Conceptually, gesture recognition is done by identifying the 
word which has the highest probability given the user’s ges-
ture. This search problem can be formulated using Bayes’ 
theorem:

= ( | ) ( )ˆ arg max ,
( )W

P G W P W
W

P G
  (3)

where P(G|W) is the likelihood of W’s word gesture match-
ing a user’s input gesture G, and P(W) reflects the system’s 
estimate of prior probability that the word W is the user’s 
intended word. The denominator P(G) only depends on the 
user’s gesture and is invariant during the search. Satisfying 
Equation (1) is equivalent to:

=ˆ arg max ( | ) ( ).
W

W P G W P W  (4)

The search for the user’s intended word is thus the product 
of two model estimates. The probability P(G|W ) reflects the 
gestural model and the probability P(W ) reflects the lan-
guage model. Different methods can be used to compute 
the gesture likelihood P(G|W) and the language model 
prior P(W).

In order to estimate P(G|W ), we have used various tech-
niques, such as dynamic time warping and template match-
ing, to compute gesture keyboarding shape similarities.21, 

46 In principle, a user drawn gesture is compared with all 
word gesture representations for all words in the lexicon. 
In practice, the vast majority of words in the lexicon are 
highly unlikely to correspond to the user’s intended word. 
Thus, to achieve real time performance the search is lim-
ited to the most likely candidates using various well-known 
search strategies, such as indexing and pruning.

To compute P(W), various language modeling tech-
niques, such as long-span language modeling with smooth-
ing can be used.8 In our experience, unigram frequencies in 
a lexicon alone provide significant power.21, 46

One of our special efforts in recognition algorithm design 
is making gesture keyboards friendly to both beginners and 
proficient users according to the ease-to-efficiency progres-
sion principle outlined earlier. In a version of our implemen-
tation,21 the weight of gesture recognition shifts from local 
features (as determined by the location of various points 
of the gesture) to the global gesture shape according to the 
behavior of the user. Specifically, if the user is unfamiliar 
with the gesture shape of the word W therefore has to slide 
from one letter to another by visual tracing, the total time 
of writing W on the keyboard can be estimated according to 
the summation of Fitts’ law time from one letter to the next 
(following Equations 1 and 2):

1
, 1

2
1

1)(
N
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k

D
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−
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where tn(W) is the normative time to trace the word W; N is 
the number of characters in W; Dk,k − 1 is the distance from 
the kth character to the (k + 1)th character in W on the key-
board; and S is the size of the (k + 1) key. a and b are two 
Fitts’ law constants.

When an input stroke is compared against the word 
gesture of W, the ratio of the stroke’s total time ts and 
the normative tracing time tn(W) can be used to adjust 
the recognizer’s relative weight on local features vs. 
the global shape features. If ts is shorter than tn(W) and 
if the user is indeed intending to write the word W, the 
user must be demonstrating a degree of shape-memory 
driven gesturing. We therefore can place more recogni-
tion weight on the global shape feature and less on the 
visually dependent local features. Such a shift can be 
automatic and continuous (not binary) according to the 
degree of acceleration from Fitts’ law prediction, and 
word candidate specific.21

4. FunCtionS anD SyStemS
While a practical keyboard includes many functions 
and features, we highlight two particularly notable novel 
functions in some of the gesture keyboard systems we 
designed and developed—“command strokes” and the 
Case key.

4.1. Command strokes
The concepts and paradigm of text input outlined above can 
also be applied more broadly to commands and user inter-
faces in general. Commands are often interleaved with text 
input. For example, users may need to edit text (copy/paste), 
activate application functions (such as Save), or switch the 
language from one to another (such as from English to 
French). We extended the gesture keyboard paradigm so 
that it could support both text entry and command activa-
tion in one system.

With our systems, the user may issue commands (such 
as “Copy” and “Paste”) by tracing out the command names 
on the keyboard starting from a designated key (e.g. a 
Cmd key). For example, Cmd-c-o-p-y copies selected text 
and Cmd-p-a-s pastes the text. Command recognition was 
made incremental so Cmd-c, Cmd-c-o, Cmd-c-o-p and Cmd-
c-o-p-y all issue the same command. The system suggests the 



SepteMBer 2012 |   voL.  55  |   No.  9  |   CommuniCationS oF the aCm     97

 

a phone equipped with a 32-bit 168 MHz Texas Instruments 
OMAP1510 CPU (Figure 6). We also led the design and 
development of a commercial version of word-gesture key-
board, ShapeWriter, released on the iPhone, Android and  
Window Mobile platforms in many languages.37 These sys-
tems reflected increased maturity and practicality, as well 
as the mobile platform hardware and software constraints 
at the time. Working with platform and technical con-
straints was a part of a journey of research and innovation.

5. emPiRiCaL ReSeaRCh
One would imagine it is simple to determine a new text 
input method’s efficacy by measuring the average user’s 
average speed. An example to the contrary is the decades’ 
old debate of QWERTY versus the Dvorak simplified key-
board that spilled over even into economic theories.10, 26 It 
is difficult to design and execute decisive tests for text entry. 
There are many reasons for this challenge, including learn-
ing, speed-accuracy trade-off, and the multifaceted nature 
of use quality.command effect as soon as the command stroke is unambigu-

ous15 (Figure 4).

4.2. Case key
Most of the time the case of a word (lower, upper or title) can 
be determined automatically in modern text input systems, 
particularly word-based systems. For example, in English 
the first word in a sentence and proper nouns are typically 
capitalized. However, there are exceptions to these normal 
rules. Automatic casing makes the use of the legacy Shift 
key unnecessary most of the time, but not all the time. This 
situation makes it difficult for the user to decide if to press 
the Shift key before entering a word. To correct the case of a 
word afterward with the Shift key is even more cumbersome 
because the user has to first select the text to be modified, 
delete it, and then use the Shift or CapsLock keys to trigger 
a mode change, and finally retype the text.

We introduced a new key on the keyboard, the Case 
key (see the lower left corner of Figure 1). This key cycles 
through the different word case alternatives for the word 
just entered or preceding the text caret. The Case key uses 
dictionary information to intelligently support nonstandard 
casing convention for some words, such as “iPhone”. Since 
the Case key modifies the word preceding the current text 
caret position (“reverse Polish”) it enables users to perform 
case corrections after the word is entered and only when 
they are actually needed.

4.3. Systems
We have designed and implemented many versions of 
experimental gestures keyboard systems, variably named 
HSK,16 SHARK,46 and SHARK221 which was publicly released 
from the IBM AlphaWorks site in 2004 (Figure 5). Until 
recently both CPU and memory were limited on mobile 
devices. But with indexing and aggressive pruning it was 
still possible to achieve real-time performance. For exam-
ple, one of the first mobile versions of gesture keyboards 
we implemented could store both the gesture and the lan-
guage model for 50,000 words in 450K memory and return 
recognition results with less than 20ms average latency on 

Figure 5. Shorthand aided rapid keyboarding (ShaRK). the first publicly 
released fully functioning word-gesture keyboard (october 2004).

Figure 6. one of the first implementations of mobile word-gesture keyboard 
running on a mobile device with a 168mhz processor in real time (2006).

Figure 4. Command strokes: gesture Cmd-c-o-p could send Copy 
command to the oS.



98    CommuniCationS oF the aCm   |   SepteMBer 2012  |   voL.  55  |   No.  9

research highlights 

 

setting method reveals the top range of performance possi-
ble with a given text input method. Similarly, the peak error-
free one sentence speed that can be achieved with a given 
input method reveals one aspect of the method’s potential. 
To measure the top speed possible, we had ten participants 
practicing five common phrases such as “Thanks for tak-
ing care of this” and “Look forward to seeing you soon” on 
the SHARK gesture keyboard for 15min and tested their 
peak performance for 10min. The recorded error-free 
peak phrase speed averaged across the ten participants was 
57.5 wpm while the top performer achieved 99 wpm.17

It is important to note that all of the above performance 
measures should be understood with the conditions they 
were collected in mind. These performance measures also 
depend on the underlying recognition algorithms imple-
mented, the lexicon size and language model embedded 
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Figure 7. the number of word gestures successfully reproduced 
without looking at a keyboard after each session of practice.

Instead of aiming for one decisive study, we have evalu-
ated gesture keyboards in two approaches. First, we have 
conducted a series of lab-based experiments in order to 
understand different aspects and the fundamental potential 
of word-gesture keyboards. Second, we have implemented 
gesture keyboard systems and released them to the public, 
starting in 2004. This has enabled us to study how users in 
the real world perceive the technology.

5.1. Gesture memory and learning
The experiment in Zhai and Kristensson46 tested a core 
premise of word-gesture keyboarding that users are able to 
recall and reproduce the gesture strokes of well- practiced 
words with little visual guidance of the keyboard. The 
ATOMIK keyboard layout,49 illustrated in Figure 2 and 
used in that experiment, was previously unfamiliar to the 
participants. In each session with the visual keyboard 
blanked, the participants were first asked to recall and 
reproduce the gesture strokes of the words practiced in 
previous sessions. They could make a second attempt if 
the first attempt of drawing the gesture on the blank inter-
face did not match the target word by the system’s shape-
based gesture recognizer. For 40min after the test, they 
practiced word gestures they had not mastered through a 
spaced-repetition schedule. The results showed that each 
participant learned on average 15 word gestures per ses-
sion. In the final test after a total of four sessions, the par-
ticipants correctly produced on average about 50 (between 
39 and 62, mean 48.8) words in their first attempt, and 
about 60 (between 49 and 77, mean 58.7) words including 
the second attempt when the first failed (Figure 7).

While the experiment is an artificial lab study that may 
not exactly correspond to users’ practical experience of 
learning word-gesture keyboarding, it nonetheless shows 
that it is possible to memorize the shape aspects of a gesture 
as defined by a keyboard and reproduce them without rely-
ing on the keyboard’s visual display. Fifty to sixty does not 
seem to be a very large number of words, but the most com-
mon 50 words in English cover 40% to 50% of word occur-
rences in common English. The less common and longer 
words typically consist of common word fragments whose 
shapes may be mastered first hence still help the user to rely 
less on the visual guidance of the keyboard.

5.2. initial user performance
In another lab experiment, we measured users’ gesture key-
boarding performance in their first 40min of use. On a familiar 
Qwerty layout, participants’ average speed reached 15, 20, and 
25 words per minute (wpm) after 5, 20, and 40min of practice, 
respectively, at a 1.1% error rate (Figure 8). There were consid-
erable individual performance differences in word-gesture 
keyboarding. The fastest participants surpassed 40 wpm by the 
end of the 40 minute experiment.17

5.3. Ceiling performance
Typing competition was a common method of demonstrat-
ing typewriter quality in the mechanical typewriter days. 
Typing competition’s results are often affected by the rules 
and context of the competition, but nonetheless the record 

Figure 8. ten novice users’ average speed of writing random common 
phrases on a gesture keyboard in the first 40 min, at 1.1% error rate.
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in the gesture keyboard, and the layout of the keyboard. 
A better optimized layout, smaller lexicon, and more error 
tolerant algorithms would afford higher performance. Many 
more theoretical and empirical questions regarding word-
gesture keyboard’s learning, initial performance, and ceiling 
speed are to be answered in the future.

6. SuBJeCtiVe eVaLuation anD uSeR  
aCCePtanCe
We have also collected subjective ratings in small-scale and 
short-term lab studies. In comparison with physical thumb 
keyboard (the dominant mobile input method at the time 
of the study), the word-gesture keyboard was on average 
considered more preferred, more fun, and less physically 
but more visually demanding. It is difficult to measure the 
total user experience of a technology in the lab. Fortunately, 
the emergence of a new generation of touchscreen devices 
such as the iPhone and Android devices and the fact that 
we had developed our research into a practical product via 
a start-up company, ShapeWriter Inc, enabled us to collect 
valuable and rarely available data on real users’ perceptions 
of a new technology.

We gathered this information by examining user reviews 
for our publicly released ShapeWriter application on the iOS 
platform. It was submitted on July 7, 2008 to Apple’s AppStore 
and released to the public on July 14, 2008. Since iOS pre-
vented apps from replacing the built-in keyboard, we built a 
note-taking app initially named “WritingPad” (Figure 1). In addi-
tion to note-taking, the app allowed users to send their notes 
via email and SMS.

After the release, we analyzed the first 556 public user 
reviews on Apple’s AppStore and reported the analysis in 
Zhai et al.51 Of all of the 556 reviews, 81.6% were completely 
positive, 12.5% were somewhat positive, and 5.9% were com-
pletely negative.

Some of the comments were highly enthusiastic. For 
instance, “Game changing app” by jhudge05: “Typing on 
the iPhone used to [sic] tedious and frustrating for me, but 
now that I use WritingPad I am actually writing faster on the 
iPhone than I was on my Blackberry”, and “Holy $41t” by 
Corso123: “ ‘revolutionized typing’ is the understatement of 
the year. This technology should be part of every keyboard on 
all touchscreens. Someone nominate these software develop-
ers for a Nobel. No Joke. Thank you so much for this software… 
–brian.”

There were individual differences in the reviews. Some 
users stated that they quickly become proficient with 
the technique (“It’s super accurate and super easy to use 
and I’m still in awe of how genius it is.”), while others had 
trouble getting used to it (“It took me a few days of use to 
get used to it”).

Interestingly, users’ opinions were also split on the impact 
of the so-called “fat finger problem.” For some users, the ges-
ture keyboard was an enabler: “I have ‘fat finger symdrome’ 
and cannot type on the Iphone. Thank goodness for this program! 
Now, I can actually write emails!”, and “Works great for people 
with large fingers like myself. Very liquid and intuitive. Brilliant 
Application.” However, other users had the opposite experi-
ence: “ShapeWriter’s on screen key pad, when used with a stylus, 

works great. But with my big fat finger, its more like sewing on a 
button while wearing boxing gloves.”

Other comments pointed out bugs and deficiencies, 
which helped us refine the software. Many reviewers wrote 
affectionate responses with words like love, omg, fun, great, 
rocks, awesome, amazing, exciting, pleasant, cool, addictive, 
stunning, astounding, and fantastic.51

Since the initial iPhone release on July 14, 2008, 
ShapeWriter has also been released for Google Android and 
Windows Mobile devices. In addition to user comments, our 
publicly released gesture keyboard systems (called SHARK 
Shorthand in 2004 and ShapeWriter in 2007–2010) were 
positively reviewed in newspapers and blogs. The first press 
mention was by San Jose Mercury News and Seattle Times in 
April 2003 and later by The New York Times, CNET, BBC World 
News, and Die Zeit in 2004–2007. Before the acquisition by 
Nuance Communications Inc, ShapeWriter Inc as a com-
pany also won a number of awards and recognition includ-
ing Google’s Android Developer Challenge Award, Time.
com’s top 11 iPhone must have applications, and Razorfish’s 
top 10 mobile technologies to watch.

Since our first public release of a word-gesture keyboard, 
SHARK Text, in 2004, many other similar offerings have fol-
lowed suit. Notable products include ShapeWriter, Swype, 
SlideIT, T9 Trace, FlexT9, and TouchPal. Together, these 
products have created popular awareness of an alternative 
paradigm for touchscreen text input, and today many people 
use them for their daily communication activities.

7. FutuRe DiReCtionS
The word-shorthand gesture keyboard project has pro-
duced a wide range of results from which we attempt to 
piece together a coherent but simplified account in this 
article. Throughout the project, we tried to bridge inven-
tion with science, practical product design and devel-
opment with theory-driven research, and application of 
modern computing techniques with human performance 
insights and modeling. We drew inspirations from theo-
retical HCI thoughts in, for example, Buxton’s work on 
user learning.3, 24 We frequently applied methods, models 
or at least the spirit of a school of thought in HCI spear-
headed by the classic monograph of Card, Moran and 
Newell.6 This school of thought bases human-computer 
interaction design on psychological insights embodied 
in approximate human behavior and performance regu-
larities, rules, equations and models. We also exploited 
to a degree we could the power of statistical approaches 
to information processing rooted in classic information 
theory,36 but enabled and modernized as computational 
power increases to a level on mobile devices impossible 
only a few years ago.

Although a new paradigm of information input has been 
established and embedded in many mainstream products, 
we believe this paradigm is still in its first generation of evo-
lution. Significant advances in research and innovations can 
be expected in the years to come.

First of all, we only have an incomplete understanding of 
the user performance of word-gesture keyboards. Deeper per-
ceptual-motor and cognitive studies are needed. For example, 
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we still do not have an accurate predictive model of users’ transi-
tion from recognition-based tracing to recall-based gesturing. 
Modern human motor control and learning theories have 
made great progress in the last decades.34, 41, 42 Leveraging 
findings and insight from that literature to make specific 
gesture keyboard design and analysis decisions offer oppor-
tunities for deeper research.

Particular lacking to date is a rigorous quantification of 
gesture space density as a function of the keyboard layout 
and the size of the lexicon. Without such a model it is dif-
ficult to fully understand error rate as a function of speed-
accuracy trade-off. “Sloppy” gestures tended to be faster 
but also more error-prone. Exact or statistical modeling 
of gesture keyboard’s speed-accuracy trade-off incorporat-
ing human control behavior is another important future 
research topic.

Also critically lacking in the literature to date is large-
scale data logging and analysis of word-gesture keyboards in 
everyday use, which may provide not only a more complete 
understanding of user behavior but also data for large-scale 
machine learning of gesture keyboard algorithms and their 
parameters. Such work of course requires significant infra-
structure and privacy preservation efforts.

The core technology of a word-gesture keyboard can 
conceivably be improved by using larger and long-span lan-
guage models that take into account several previous words 
of context when they compute the language model’s prior 
belief in a word candidate. However, the trade-off between 
the language model’s size and efficacy remains an open 
question in the case of word-gesture keyboards. The spatial 
model of gesture keyboards should also be more broadly 
explored and tested. We have only explored a certain type 
of simple and efficient local (location) and global (shape) 
features for gesture keyboard recognition, but a variety of 
features can be invented in the future, particularly given the 
non-stop improvements in processing speed and memory 
capacity of mobile devices.

Gesture keyboards can also be used with other modali-
ties. For example, if gestures can be effectively delimited 
they may be incorporated into eye-tracking systems or 3D 
full-body motion tracking systems, such as those used in 
Microsoft game products. Gesture keyboards can also be 
potentially integrated with speech input. In fact, there is 
already an experimental system that simulates the effects of 
a word-gesture keyboard combined with speech.19

We have alluded to the keyboard layout issue several 
times in this paper. For ease of adoption, Qwerty is a nec-
essary default layout. It is very clear that the efficiency of 
word-gesture keyboards can be significantly improved if 
the keyboard layout is optimized. Qwerty is inefficient for 
word-gesture keyboarding because the gesture strokes fre-
quently zigzag between the left and right over a relatively 
long distance. For this reason, we would want the key-
board to be arranged so that frequent letter-key pairs tend 
to be closer to each other. The layout of a gesture keyboard 
can also be optimized toward ambiguity minimization, so 
that word gestures are more distinct from one another. 
Not only would this make gesture keyboards more error-
tolerant, but also facilitate ease to efficiency progression 

since gestures defined on such a layout should be more 
distinguishable. How to optimize the layout toward mul-
tiple objectives is another open question.2 Even more 
challenging is how to get users realize the benefits of an 
optimized layout and quickly learn them in perhaps a play-
ful fashion.23
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