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ABSTRACT

We investigate ways to improve recognition accuracy on spo-

ken corrections. We show that a variety of simple techniques

can greatly improve the accuracy on corrections. We further

develop a flexible merge model that improves accuracy by

combining information from the original recognition and the

spoken correction. Our merge model operates on word con-

fusion networks and can easily incorporate prior beliefs about

the recognition events (e.g. which words are likely correct

or incorrect). By combining all of our techniques, the per-

centage of correctly recognized spoken corrections increased

from 21% to 53%.

Index Terms— speech recognition, error correction, spo-

ken corrections, word confusion network combination

1. INTRODUCTION

A practical speech-based text entry interface needs to not only

minimize the recognition error rate, but also enable users to

efficiently correct errors. Depending on the usage scenario,

there are different ways to tackle error correction. For mobile

speech dictation it may be possible to completely rely on an

alternative modality, such as a touch-screen (e.g. the Parakeet

system [1]). However, there are some usage scenarios, such as

in-car systems, that require error correction to be done solely

by speech. Even for desktop use, users suffering from repeti-

tive strain injuries (RSI) may want to rely on speech as much

as possible. Additionally, users initially tend to try to correct

speech recognitions errors using speech [2]. Users often re-

main in the speech modality even when faced with repeated

recognition errors [3]. In this paper we look at how to improve

recognition of spoken corrections.

Typically, voice-only correction uses a two-step process.

In the first step, users select a portion of the misrecognized

text by voice (e.g. “select the bat sat”). Next, they speak their

intended replacement text (e.g. “the cat sat”). However, as

first suggested by McNair and Waibel [4], this two-step pro-

cess can be replaced by a one-step process. In one-step cor-

rection, users speak their correction and the system infers both

the error region and the replacement text. In prior work, we

developed a system in which users speak their intended text

and the error region is automatically determined [5]. Our sys-

tem can also use an additional weak input channel to improve

Fig. 1. The user is indicating the error region to the system.

its detection. For example, the user can indicate an error by

swiping their finger across a touch-screen (figure 1). In this

work, we look at the next phase of the problem: accurately

determining the replacement text.

We make the following contributions. First, we detail a

series of simple and effective ways to cut the word error rate

of corrections. Then we show the different ways language

modeling information can be used to aid the recognition of

corrections. Thereafter we present a merge model that com-

bines information from the initial recognition result and the

subsequent spoken correction. Last, we show how using all

the above techniques can more than double how often spoken

corrections are recognized completely correct.

2. DATA COLLECTION AND SETUP

In prior work [5], we had users read sentences to a speech

recognition interface. The recognition result was displayed

with any errors highlighted in red. Users were then prompted

to respeak portions of the sentence around any errors (fig-

ure 2). Users spoke sentences drawn from the WSJ0 si et 05

and WSJ1 si et s2 test sets. The corrections contained vary-

ing amounts of correct context around the error. We collected

some utterances with no correct context, some with left con-

text, some with right context, and some with both.

Our development set consists of 401 spoken corrections

from the first three users (one of which was the first author).

We used this set throughout this paper to tune our model pa-

rameters. The remaining 8 users were used as an evaluation

test set. The evaluation set has 384 full sentences and 832
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Fig. 2. Example of a user being asked to provide a correction

with one word of correct context on the right.

spoken corrections. The full sentences consist of both sen-

tences that were recognized completely correct and sentences

which had recognition errors.

2.1. Recognition setup

We used the CMU Sphinx speech recognizer, training a US-

English acoustic model on 211 hours of WSJ data. We trained

cross-word triphones with a 3-state left-to-right HMM topol-

ogy. We parameterized audio into a 39-dimensional feature

vector consisting of 12 Mel-frequency cepstral coefficients

plus the 0th cepstral, deltas and delta deltas. We used 8000

tied-states with 16 continuous Gaussians per state and diag-

onal covariance matrices. We used the CMU pronunciation

dictionary without stress markings (39 phones plus silence).

We streamed audio sampled at 16 kHz to the recognizer

as soon as the Sennheiser PC 166 microphone was enabled.

We performed cepstral mean normalization based on a prior

window of audio. The recognizer was adapted to each user’s

voice using 40 sentences. We adapted the model means us-

ing maximum likelihood linear regression with 7 regression

classes. We used the PocketSphinx decoder and tuned it to

provide near real-time recognition. We trained a trigram lan-

guage model (LM) using text from the CSR-III newswire cor-

pus (222M words), the most frequent 64K words, and inter-

polated modified Knesser-Ney smoothing.

3. ACOUSTIC MODEL AND DECODER

To improve accuracy on corrections, we made a number of

changes to our acoustic model, decoding parameters, and au-

dio processing. In this section, we describe each improvement

(see table 1 for a summary of results).

Recognizing corrections with the same setup used for the

initial full sentences had a high word error rate (WER) of

55%. Our first modification was to use a more complex acous-

tic model with more Gaussians per state (32 versus 16) and a

more complex HMM topology (5-states with skip transitions

versus 3-states without skips). This resulted in a 6.6% abso-

lute reduction in WER.

Second, we tuned the decoder’s insertion penalty, silence

penalty, and language model scale factor on our development

set of corrections. We found corrections required a much

higher penalty for insertions, a lower penalty for silence, and

a slightly higher language model scale factor. Changing these

parameters resulted in a further 1.9% reduction in WER.

Third, we allowed the decoder to search harder. This

(along with the more complex acoustic model) significantly

slowed down recognition from 1.4 to 4.7×RT. But such a

slowdown is probably justified since corrections tend to be

short and the user experience can seriously degrade if errors

occur while trying to correct errors [3]. Using wider beams

resulted in a further 4.0% reduction in WER.

Finally, the corrections contained substantial amounts of

silence. We discovered that this silence was adversely affect-

ing our cepstral mean normalization. We used Sphinx’s si-

lence filtering module to remove silence sections (from all

parts of the utterance, not just the start and end). Sphinx’s si-

lence filter has 12 free parameters. We tuned these parameters

to provide good performance on a set of sentence, phrase, and

word utterances recorded by the first author. Silence filtering

made a big difference, reducing WER by another 12%.

3.1. Impact of model switching

Zweig [6] showed that switching to a different acoustic model

significantly improved accuracy for web queries repeated af-

ter an error. We conducted an experiment to see if such a

system switching approach could improve recognition for our

problem domain. All our acoustic models were trained on

identical WSJ training data and used the same trigram lan-

guage model. We varied aspects of the acoustic model, such

as front-end parameterization, HMM topology, number of

tied-states, number of Gaussians per state, and decoder used

(PocketSphinx or HDecode). We used speaker independent

models and utterance-wide cepstral mean normalization.

We compared gains on our corrections (utterances known

to be problematic) versus gains on a test set of a thousand

WSJ utterances (utterances that may or may not be difficult to

recognize). As expected, we found improvements on both test

sets using more complex models with wider beams (table 2).

However, we in fact saw larger relative gains on the WSJ data

than we saw on the correction data. It is unclear why this

was the case. Perhaps we should have used different acoustic

training data for our correction acoustic model (as in [6]).

4. LANGUAGE MODEL

Normally, language models are trained on full sentences with

special pseudo-words placed at the start and end of every sen-

tence. A recognizer’s search usually starts by assuming a lan-

guage model context of the start word. This is suboptimal for

corrections as they can consist of words appearing anywhere

in a sentence.

The first and most obvious improvement is to use the

words preceding and following the correction location. This

has previously been shown to be effective [7]. In this paper,

we assume the location of the correction is known exactly

(perhaps the user has selected the region with a mouse or

perhaps we have successfully inferred the location).
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Corrections Full sentences

WER Δ ×RT WER Δ ×RT

Original acoustic model, 3 state 16 Gaussians 54.9 . 1.4 18.6 . 0.9

+ Different acoustic model, 5 state 32 Gaussians 48.3 12.0% 3.4 15.6 16.1% 2.6

+ Correction-specific penalties 46.4 15.5% 3.3 15.8 15.1% 2.5

+ Wider beam widths 42.4 22.8% 4.7 12.0 35.5% 3.6

+ Silence filtering 30.8 43.9% 1.9 11.9 36.0% 3.1

Table 1. WER, relative improvement, and real-time factor on the corrections and the original full sentence utterances.

Acoustic model Corrections WSJ sentences

features topology tied states densities decoder WER Δ ×RT WER Δ ×RT

MFCC 3 state 8000 16 / state PocketSphinx 68.0 . 1.7 12.6 . 1.1

MFCC 3 state 10000 32 / state PocketSphinx 63.2 7.1% 4.4 9.6 23.8% 3.2

MFCC 3 state 8000 64 / state PocketSphinx 62.9 7.5% 6.9 9.4 25.4% 4.6

MFCC 5 state 8000 32 / state PocketSphinx 59.3 12.8% 5.5 9.3 26.2% 3.8

MFCC 5 state 8000 1024 codebook PocketSphinx 58.7 13.7% 2.8 10.0 20.6% 2.0

PLP 3 state 13000 16 / state HDecode 49.3 27.5% 6.4 6.9 45.2% 3.6

MFCC 3 state 10000 32 / state HDecode 45.0 33.8% 9.3 6.7 46.8% 7.3

Average 58.1 17.1% 5.3 9.2 31.3% 3.7

Table 2. Results of the acoustic model switching experiment. The top row is the acoustic model that misrecognized the initial

sentence. WER is shown for the subsequent correction utterances as well as on a general WSJ test set.

There are two choices about when to incorporate context.

The first is to use the context to weight the hypotheses ex-

plored during the recognizer’s search. The second is to apply

the context only after recognition completes, rescoring paths

in the lattice. The advantage of using the context during the

search is that this may avoid search errors resulting from using

the wrong language model context. The disadvantage is that

the correction location must be known before decoding can

begin. An additional disadvantage is that multiple searches

are required if several candidate locations are to be evaluated.

If we believe utterances are short and may consist of

words drawn mid-sentence, we can also modify our language

model’s training data. We did this by cutting up the sentences

in our newswire data by inserting sentence start and end

symbols between every 1–4 words. Such a language model

(which we term here a fragment LM) has the advantage that

no knowledge about the context is needed.

As shown in table 3, using context was advantageous. It

was somewhat better to apply context during the search than

afterwards. Using the fragment language model was also sur-

prisingly effective, even when no context was used.

5. MERGE MODEL

For spoken corrections, there is potentially useful information

in the original result. Successfully leveraging this informa-

Context Context applied Sentence Fragment

during LM LM

none - 30.8 27.6

left decoding 27.2 26.6

right decoding 28.6 27.9

left+right decoding 24.6 26.4

left+right rescoring 25.7 26.5

Table 3. WER on the corrections using different language

models and known context.

tion is challenging given the original result is known to be

erroneous. Here we investigate a novel model that merges

information from multiple recognition events.

5.1. Design of model

We designed our model with a number of criteria in mind.

First, we wanted results integrated asynchronously and with-

out the model needing deep knowledge about the recognition

processes. This allows several recognizers to operate in paral-

lel in a streaming mode and does not require both recognition

events to occur simultaneously. It also allows us to fuse in-

formation from multiple input modalities which may be using

very different recognizers.
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Fig. 3. Confusion network with the word error “bat” shown in

red italics. The hypothesis that nothing was said in a cluster

is denoted by the ε symbol.

Fig. 4. The portion of the original confusion network that was

cut out and softened. The added edges are in dotted red. The

* symbol represents wildcard transitions.

We also wanted the model to allow us to easily enforce

beliefs we may have about the results being merged. For ex-

ample, for spoken corrections we have found that users typi-

cally speak some amount of correct context around errors [5].

We would like a model that allows us to easily incorporate

such information to improve performance.

5.2. Model description

Our model merges results represented as word confusion net-

works [8]. A confusion network is a time-ordered sequence

of clusters where each cluster contains competing words and

their probabilities (figure 3). The original confusions net-

works are softened by adding three extra transitions to every

cluster. An epsilon transition is added going to the next clus-

ter without generating a word. A wildcard self-loop allows

the current cluster to generate any word while remaining in

the same cluster. A wildcard next transition allows generation

of any word and proceeds to the next cluster. The probability

of each of the added transitions can be varied between differ-

ent confusion networks that are being combined and can even

be varied in different clusters within a confusion network.

Using our model for spoken corrections, the first confu-

sion network is obtained by cutting out a section from the

original full sentence confusion network based on the correc-

tion’s location. The second confusion network is obtained

from recognizing the spoken correction. Figure 4 shows an

example network cut from the original sentence result. Fig-

ure 5 shows an example network from a spoken correction.

The model works by searching for a joint path through the

softened confusion networks. We explain the search using the

token passing model [9]. A token in our model tracks three

pieces of information: the position in each of the confusion

networks, the accumulated log probability, and the previous

few words of language model context.

Fig. 5. Correction utterance with added dotted red edges.

Search begins with a token that starts in the first cluster

of all networks. A token is finished when it reaches the last

cluster in every network. At each step of the search, we se-

lect a token from the pool of unfinished tokens. From the se-

lected token’s position in each network, we compute all pos-

sible moves that generate a single word (either a real word

or a wildcard word). We then take the cross-product between

candidate moves in each network. We consider a combination

of moves valid only if it obeys two rules. First, at least one of

the moves must generate a real word (i.e. not every network

can use a wildcard). Second, if multiple networks generate

real words, these words must match.

For large networks there are a vast number of possible

combinations and an admissible search is intractable. We ap-

ply a number of pruning beams to focus our search to only the

most promising possibilities.

For all valid combinations, a new token is created at the

location specified by the combination of moves. The new to-

ken’s log probability is calculated as follows:

logP (tnew) = logP (torig)+

N∑

i=1

wi·logP (mi)+s·logP (gnew)

where P (torig) is the probability of the original token, N is

the number of confusion networks being combined, wi is the

weight of the ith confusion network, P (mi) is the transition

probability in the ith network, s is the language model scale

factor, and P (gnew) is the language model probability of gen-

erating the word produced by the token’s move.

For example, consider the original recognition in fig-

ure 4 and the correction in figure 5. Assume a token is in

the second-to-last state in both networks. Table 4 shows the

current available moves in each network and the resulting

valid combinations of moves. Each of the valid combinations

would give rise to a new token. The best combination in this

case is for both networks to agree on the word “sat”.

5.3. Using knowledge of correct and incorrect words

We extended our model to use knowledge about whether

words in the 1-best result were correct or incorrect. Even

knowing just which words are incorrect has been shown to

significantly improve accuracy [10]. We modify the clusters

corresponding to the 1-best words in the network cut from the

original recognition. We had three separate sets of wildcard
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Original Correction Valid combos Probability

∗self ∗self ∗self sat 0.0075

sat sat ∗self nat 0.0019

at nat sat ∗self 0.0047

∗next ∗next sat sat 0.3525

sat ∗next 0.0141

at ∗self 0.0028

at ∗next 0.0084

∗next sat 0.0225

∗next nat 0.0057

Table 4. Examples of available moves for a token in the

second-to-last states of figure 4 and 5.

Fig. 6. Cut out portion after modification based on whether

words were classified as correct, incorrect or unknown.

and epsilon probabilities for words deemed correct, incorrect,

or unknown. In addition, if a word was classified as correct,

we eliminated all other words from that cluster. If a word was

classified as incorrect, we removed just the best word from

that cluster. After removing words, the probabilities of the

cluster were renormalized. See figure 6 for an example.

Knowledge about the correctness of words might be ob-

tained from the user. For example, a user might strike through

incorrect words with his or her finger. Another option would

be to learn from past history whether a user typically pro-

vides correct left or right context words. For cases without

such user information, we also explored automatically classi-

fying words by using the posterior probabilities in the confu-

sion network. Words with a high probability were classified

as correct, words with a low probability were classified as in-

correct, and things in between were classified as unknown.

The thresholds for this classification were set to optimize per-

formance on our development set.

5.4. Results

A popular way of combining results from multiple recogniz-

ers is confusion network combination (CNC) [11]. In CNC,

networks are aligned and merged using an edit distance algo-

rithm with a distance metric defined over clusters. We com-

pared our model against CNC as implemented by the SRILM

toolkit. Weights can be assigned to each network in the com-

bination. We tuned these weights using our development set.

As shown in table 5, CNC provides a 0.7% absolute re-

WER Δ

No use of original result 24.6 .

Confusion network combination 23.9 2.8%

Merge model 23.7 3.7%

Merge model, correct+incorrect 23.3 5.3%

Merge model, oracle incorrect 22.7 7.7%

Merge model, oracle correct 21.0 14.6%

Merge model, oracle correct+incorrect 20.7 15.9%

Table 5. Results showing improvement by using information

from the original confusion network result.

Correct Num Words Original Final

context utts per utt % correct % correct

none 200 1.9 26.5 57.5

left 187 3.1 26.2 55.6

right 213 3.4 19.2 50.7

both 232 4.4 14.7 49.6

all data 832 3.3 21.3 53.1

Table 6. Table showing how often corrections were recog-

nized completely correct before and after applying all our

techniques (excluding oracle knowledge). These results used

the setup “Merge model, correct+incorrect” from table 5.

duction in WER. Our merge model does even better, reducing

WER by another 0.2%. This is perhaps because our model

uses language model constraints during its search. CNC can

put clusters next to each other that may result in improba-

ble word sequences. Using our extended model with inferred

correct, incorrect and unknown classifications, we obtain a

further reduction of 0.4%. If we know with certaintity which

words are correct and incorrect, WER drops by another 2.6%.

6. DISCUSSION

Spoken corrections are difficult to recognize since the reason

the user spoke a correction is that the system failed in the first

place. From a user perspective a spoken correction is really

only successful if all the words in the correction are correct.

Table 6 shows the percent of time corrections where com-

pletely correct before and after applying all our techniques

(excluding the use of oracle knowledge in our merge model).

The probability of a completely correct recognition more than

doubled. In the case where the user has provided both left and

right context around the error, the probability of completely

correct recognition more than tripled. Note that table 6 shows

that providing more surrounding context tends to reduce how

often corrections are completely correct. This is because as

the number of words per utterance increases, it becomes more

difficult to recognize every word correctly. However, after ap-

plying our improvements, the percent correct is much higher
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and more stable regardless of the amount of context used.

We only applied our merge model to the problem of spo-

ken corrections. The model may also be applicable to other

scenarios, such as fusing multiple modalities, performing sys-

tem combination of multiple recognizers, and recognizing re-

peated utterances. The latter problem has been investigated

before (e.g. [12, 6]) and a comparison would be interesting.

We previously found that users tend to change their

speaking style noticeably when performing corrections [13].

We suspected substantial gains might be possible by using

correction-specific training data instead of WSJ read-speech.

However, since we lacked large amounts of correction data,

we instead tried adapting our WSJ models using corrections

from other speakers obtained in a previous experiment [13].

We were unable to show gains on our development set. We

suspect substantially more correction data is required to to

make this idea viable. In particular more speakers, more ut-

terances, and more diverse adaptation texts may be required.

7. CONCLUSIONS

In this paper we investigated improving the recognition of

spoken corrections. We first showed that a variety of rel-

atively straight-forward techniques such as silence filtering

reduced the error rate of spoken corrections from 54.9% to

30.8% (table 1). We showed the importance of using language

information specific to corrections. We then described a flexi-

ble merge model that combines information from the original

recognition result and the subsequent spoken correction. The

merge model operates on confusion networks and can easily

incorporate prior beliefs about the recognition events, such as

which words were likely correct or incorrect. Combining all

these techniques, the probability of a spoken correction being

recognized completely correct more than doubled (table 6).

The results in this paper extend our previous work on lo-

cating the error regions for spoken corrections [5]. Using the

techniques in this paper, we are now building a complete sys-

tem for one-step correction of speech recognition errors. In

general, we believe spoken corrections would benefit from

more research. As we alluded to in the introduction, the effi-

ciency of a speech recognition system is determined not only

by recognition accuracy, but also by how well the system aids

users in correcting errors. There has been numerous studies in

human-computer interaction on how error correction affects

users’ speech recognition performance (e.g. [3, 2]). How-

ever, there have been relatively fewer studies exploring the

challenges associated with recognizing error corrections. We

hope this paper will help stimulate progress in this area.
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