
The Feasibility of Eyes-Free Touchscreen Keyboard Typing

Keith Vertanen Haythem Memmi Per Ola Kristensson
Montana Tech Montana Tech University of St Andrews

Butte, Montana, USA Butte, Montana, USA St Andrews, UK
kvertanen@mtech.edu hbmemmi@mtech.edu pok@st-andrews.ac.uk

ABSTRACT
Typing on a touchscreen keyboard is very difficult without
being able to see the keyboard. We propose a new approach
in which users imagine a Qwerty keyboard somewhere on
the device and tap out an entire sentence without any visual
reference to the keyboard and without intermediate feed
back about the letters or words typed. To demonstrate the
feasibility of our approach, we developed an algorithm that
decodes blind touchscreen typing with a character error rate
of 18.5%. Our decoder currently uses three components: a
model of the keyboard topology and tap variability, a point
transformation algorithm, and a long-span statistical lan
guage model. Our initial results demonstrate that our pro
posed method provides fast entry rates and promising error
rates. On one-third of the sentences, novices’ highly noisy
input was successfully decoded with no errors.

Categories and Subject Descriptors
K.4.2 [Computers and Society]: Social Issues - assistive
technologies for persons with disabilities.

1. MOTIVATION AND APPROACH
Entering text on a touchscreen mobile device typically in
volves visually-guided tapping on a Qwerty keyboard. For
users who are blind, visually-impaired, or using a device
eyes-free, such visually-guided tapping is difficult or impos
sible. Existing approaches are slow (e.g. the split-tapping
method of the iPhone’s VoiceOver feature), require chorded
Braille input (e.g. Perkinput [1], BrailleTouch [3]), or require
word-at-a-time confirmation and correction (e.g. the Fleksy
iPhone/Android app by Syntellia).

Rather than designing a letter- or word-at-a-time recogni
tion interface, we present initial results on an approach in
which recognition is postponed until an entire sentence of
noisy tap data is collected. This may improve users’ effi
ciency by avoiding the distraction of intermediate letter- or
word-level recognition results. Users enter a whole sequence
of taps on a keyboard they imagine somewhere on the screen
but cannot actually see. We then decode the user’s entire

Figure 1: Test development interface. Shown are the
taps and recognition results before (left) and after
transformation (right). Taps were scaled horizon
tally and slightly translated/rotated. Taps are col
ored from red (first) to blue (last). The user tapped
“have a good evening” without a visible keyboard.

intended sentence from the imprecise tap data. Our recog
nizer searches for the most likely character sequence under
a probabilistic keyboard and language model.

The keyboard model places a 2D Gaussian with a diagonal
covariance matrix on each key. For each tap, the model pro
duces a likelihood for each of the possible letters on the
keyboard with higher likelihoods for letters closer to the
tap’s location. Our 9-gram character language model uses
Witten-Bell smoothing and was trained on billions of words
of Twitter, Usenet and blog data. The language model has
9.8 M parameters and a compressed disk size of 67 MB.

Since users are imagining the keyboard’s location and size,
their actual tap locations are unlikely to correspond well
with any fixed keyboard location. We compensate for this by
geometrically transforming the tap points as shown in Figure
1. We allow taps to be scaled along the x- and y-dimensions,
translated horizontally and vertically, and rotated by up to
20 degrees. We also search for two multiplicative factors
that adjust the x- and y-variance of the 2D Gaussians.

Our current decoder operates offline, finding the best trans
form via a grid search. Transforms are ranked by first trans
forming a tap sequence and then making a fixed decoding
pass. The pass is fixed in that we make a greedy decision
for the best letter for each tap, fixing our decision for the
rest of the search. This allows us to quickly evaluate many
possible transforms. The probability of the resulting char

mailto:pok@st-andrews.ac.uk
mailto:hbmemmi@mtech.edu
mailto:kvertanen@mtech.edu

acter sequence is taken as the score for a transform. Using
the highest scoring transform we then perform a full de
coding pass. In full decoding, all character sequences are
potentially considered. To make the search tractable, we
use beam width pruning to focus the search.

2. DATA COLLECTION AND RESULTS
We developed an iPhone app that collected tap data. Users
heard an audio recording of a short stimulus sentence when
ever they touched the screen with two fingers at the same
time. To simulate not being able to see the keyboard, we
blindfolded users. The app merely recorded tap positions,
no recognition was performed on the device.

We measured entry rate in words per minute (wpm). A word
was defined as five characters (including spaces). Time was
measured from a sentence’s first tap until a double-touch.
Error rate was measured using character error rate (CER).
CER is the number of characters that must be substituted,
inserted or deleted to transform the user’s entry into the
stimulus, divided by the length of the stimulus. We also
report word error rate (WER), which is analogous but on
a word-basis, and sentence error rate (SER), which is the
percentage of sentences that had one or more errors.

In our first experiment, 14 participants entered 20 sentences
chosen at random from short memorable sentences from the
Enron mobile test set [4]. All participants were familiar
with the Qwerty keyboard. Other than the playback of
sentences, no audio or tactile feedback was provided. There
was no mechanism to correct errors. Participants were told
to hit an imaginary spacebar between words.

Participants’ mean entry rate was 29.4 wpm. Table 1 shows
the error rates for different approaches: full decoding with
out transformation, full decoding with transformation, and
full decoding with transformation and keyboard variance op
timization. Combining all models improved accuracy. Com
bination was performed by choosing the model result that
was most probable under the language model.

Given the error rates in our first experiment, we realized we
needed more signal from users. We did this by modifying
our app to require a right swipe gesture for spaces (similar
to [2]). We classified a touch event as a swipe if its width
was over 52 pixels. Our decoder was modified to only insert
spaces for swipe events. We also added audio feedback. For
taps we played the standard iPhone keyboard click sound.
For swipes we played the standard iPhone unlock sound.

In our second experiment, 8 participants entered 40 sen
tences while blindfolded. All participants were familiar with
the Qwerty keyboard. Participants’ mean entry rate was
23.3 wpm. Table 2 shows the error rates using different
transforms. Since we had information about word bound-

Table 1: Error rates from our first experiment.

Model CER WER SER

No transform 60.5 83.0 97.0
Transform 35.4 56.7 84.5
Transform + variances 36.6 52.7 80.0
Combination 32.9 49.1 77.8

Table 2: Error rates from our second experiment.

Model CER WER SER

No transform 51.1 80.4 90.9
Transform 20.0 32.2 67.2
Transform + variances 27.0 41.4 74.5
Word transform 25.1 40.9 80.5
Word transform + variances 31.0 49.0 86.1
Combination 18.5 30.1 67.9

●

●
●

●
●

●

●

●

●

●
●

●

●

●

●●

●

●
●●

1 2 3 4 5 6 7 8

0
20

40
60

80
10

0

Participant

E
rr

or
 ra

te
 (C

E
R

 %
)

Figure 2: Error rates from our second experiment.

aries based on the right swipe, we also tested computing
geometric transforms for each word independently. We con
jectured this might help if users’ imagined keyboard location
or size drifted between words. The right swipe gesture made
recognition much easier. Independent word transforms did
worse on average than a single sentence transform but did
help improve accuracy when combined with other models.

As shown in Figure 2, individual error rates were variable.
Our best user had an error rate of 9.8%. Exactly why this
user had such a relatively low error rate is unknown. But it
is plausible this participant was more careful and accurate
in tapping. This provides hope that, at least with practice,
users may eventually achieve much lower error rates.

3. CONCLUSIONS
We have proposed a new approach to touchscreen keyboard
typing in which users imagine a keyboard somewhere on the
device and tap out an entire sentence without any visual ref
erence to the keyboard. Our preliminary results show this
may be a viable approach. While error rates are still some
what high, there remain numerous avenues for improvement.
Future work includes: a) improving recognition accuracy, b)
implementing efficient error correction interfaces, c) investi
gating how to obtain a better signal from users, and d) col
lecting data from users who are blind or visually-impaired.

4. REFERENCES
[1] S. Azenkot, J. O. Wobbrock, S. Prasain, and R. E.

Ladner. Input finger detection for nonvisual touch
screen text entry in Perkinput. In Proc. Graphics
Interface, pages 121–129, 2012.

[2] P. O. Kristensson and S. Zhai. Relaxing stylus typing
precision by geometric pattern matching. In Proc. IUI,
pages 151–158, 2005.

[3] C. Southern, J. Clawson, B. Frey, G. Abowd, and
M. Romero. An evaluation of BrailleTouch: mobile
touchscreen text entry for the visually impaired. In
Proc. MobileHCI, pages 317–326, 2012.

[4] K. Vertanen and P. O. Kristensson. A versatile dataset
for text entry evaluations based on genuine mobile
emails. In Proc. MobileHCI, pages 295–298, 2011.

