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1 Introduction

AI-assisted systems are becoming more pervasive across a variety of fields. The level of

assistance ranges from partial assistance to fully autonomous AI control. In the former,

the system assists the operator, so they perform at their highest level under a variety of

conditions. In the latter, no input from the operator is necessary. Examples of partial assis-

tance include airport baggage threat detection, which uses machine learning classifiers,

and attention aware systems, which employ sensors and AI to monitor operator behavior

and assist them where possible. Fully automated AI systems can be found in several sec-

tors, such as aircraft, transport, and medicine.

Any complex system, whether it uses AI or not, is susceptible to risks. Risks need to be

assessed and managed. As a consequence, many risk assessment and risk management

strategies have been developed over the years. These strategies have been developed to

identify, capture, and manage risks in various ways. The reason for a plurality of methods

is that no single strategy is capable of capturing and managing all risks in all situations.

For instance, failuremode and effects analysis (FMEA) is one of the first developed risk

assessment methods. A failure mode is the manner in which something fails to fulfill its

function. The method was originally described in US Armed Forces Military Procedures

document MIL-P-1629 [1] in 1949. By the 1960s, NASA [2] was using variants of FMEA

in their programs (e.g., Apollo [3], Viking, Voyager, Magellan, Galileo [4], and Skylab [5])

and by the 1970s, it had spread to petroleum exploration [6], the automotive industry

[7], wastewater treatment plants [8], and the food industry [9].

Another widely used risk assessmentmethod is fault tree analysis (FTA). FTAwas devel-

oped in 1962 by Bell Labs to evaluate ballistic launch control systems [10]. Boeing incor-

porated FTA in their civilian aircraft design process in 1966 [11]. In 1970, the US Federal

Aviation Administration (FAA) incorporated FTA into the CFR §25.1309 airworthiness reg-

ulations for aircraft. The FAA later extended its use to other areas within the US National
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Airspace Systems [12]. NASA considered using FTA in their Challenger program but

decided against it due to the calculations resulting in unacceptably low reliability values.

Instead, they favored the continuation of qualitative risk assessment methods, including

the previously mentioned FMEA method. This decision proved to be a major oversight

after the Challenger accident. As a consequence, NASA reconsidered the importance of

using quantitative risk assessment methods and resumed their use, including the use

of FTA [13].

Another popular method is event tree analysis (ETA). ETA was developed as an alter-

native to FTA. Since ETA makes an assumption on systems units either working or failing,

it makes the analysis more manageable [14]. As ETA is used to analyze specific events, it

allows the identification of all sequences of events and failures that can occur as a result of

an originating event and its subsequent events.

FMEA, FTA, and ETA have evolved from the need to address different challenges pre-

sented by various types of systems with varying inherent complexities. History has dem-

onstrated that failing to assess and manage risks can lead to catastrophic failures, such as

the Challenger accident. However, riskmanagement techniques can be difficult to transfer

across domains as each domain has different requirements. This is particularly difficult

for systems involving AI, as they have a level of automation that may not be possible to

directly control. To tackle this problem, Falco et al. [15] proposed the creation of a regu-

latory body that would standardize risk management techniques and enforce compliance

as a way to improve responsibility and control of AI-assisted systems.

Attention aware systems are a relatively new class of AI-assisted systems, and their risks

are currently not well understood. In this work, we want to draw attention to how risk

management strategies can be applied to attention aware systems. Our motivation is to

avoid history repeating itself.

We first explain what an attention aware system is and what its capabilities are. We

then discuss the importance of managing and mitigating risks for such systems. We later

discuss various considerations that should be taken into account and give recommenda-

tions on how to develop effective risk management strategies. This work is a first step to

understanding how to manage risks in human-in-the-loop AI-assisted attention aware

systems.

2 Attention aware systems

The main purpose of an attention aware system is to detect operators’ focus of attention

and manage it in such a way that the system can ensure optimal task operation under a

variety of conditions, such as when operators are experiencing fatigue and/or extraordi-

narily high workloads.

Fig. 6.1 shows an example of a functional architecture of an attention aware system.

The dashed rounded rectangle represents the system boundary. Arrows entering the

boundary are input signals from other systems and arrows leaving the boundary are out-

put signals from the system. In this particular functional architecture, the functionality of



FIG. 6.1 Functional structure of an attention aware system.
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the system has been decomposed into six functional units represented by gray rounded

rectangles.

The function Determine Operator Focus of Attention parses operator sensor

data and generates attention events. The function Track Operator Target Aware-

ness combines suitable application output and attention events to detect target aware-

ness. The function Track Operator Target Interaction collates target interactions

from the output provided by the application. The function Track Operator Target

Intention collates and analyzes target awareness and target interaction information

to estimate potential future operator actions. The function Balance Operator Atten-

tion combines target awareness, target interaction, and target intention informationwith

the application output, target priorities, and task performance data to build and evaluate

the current application and operator state in order to output a balance requirement signal.

Finally, the Intervene Operator function processes a balance requirement signal by

turning it into a sequence of instructions containing the targets and interventions that

the application needs to deploy. For a more detailed explanation of these functions, see

prior work [16].

From the preceding description it is clear that, depending on the particular implemen-

tation and application domain, the complexity of each of the previous functions can vary

greatly. This, in turn, will affect the difficulty of analyzing and managing the risks of that

particular deployment of the attention management system.

Themost complex function in the system is Balance Operator Attention. It works

by processing signals containing operator and application states to construct an overall
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operator-application state. It then evaluates this state to detect drops in task performance

or any other operator aspect that may require additional attention and infers the source

causing a drop in performance. There are several failure modes that can arise in such a

function. Two of the most obvious ones are arriving at an incorrect state because signals

from previous functions failed in some way, and/or incorrect aggregation and/or assess-

ment of the overall state due to parameterization errors.

Another complex function is Intervene Operator. This function uses the informa-

tion in the balance requirement signal to address the sources of poor performance iden-

tified by the previous component. To achieve this, it devises an intervention strategy that

assists the operator in returning to an acceptable level of operating performance. An inter-

vention strategy consists of coordinated instructions where, for example, the saliency of

certain information presented on a display is manipulated in such a way that the opera-

tor’s focus of attention is directed either toward it or away from it. However, the mecha-

nisms used to influence the operator introduce their own failure modes. For example,

saliency changes can appear confusing to the operator or the behavior prompted by

the system can be misunderstood by the operator.

Another important aspect consists of the objectives behind interventions. As previ-

ously stated, the primary purpose of the system is tomanage the operator’s focus of atten-

tion such that the operator canmaintain an appropriate task performance level. However,

the system can leverage the operator’s focus of attention in a variety of ways depending on

the behavior the system wishes to induce in the operator. For example, the system can

intervene with the operator to ensure that they balance their actions between all tasks.

As a result of stress, fatigue, or misunderstandings, the operator can neglect some of their

duties in favor of others. This can lead to failures in monitoring important information or

periodically carrying out less frequent tasks.

Another objective of interventions can be to ensure that operators use their time or

actions more effectively. For example, the system can help the operator focus on

higher-priority targets or tasks. However, for this to be possible, the system needs to

understand the tasks to potentially identify more optimal ways of performing them. In

other cases, poor task performance may be caused by the operator misunderstanding

ormisinterpreting information. This can happen due to, for example, the state of the oper-

ator, such as being under stress or experiencing fatigue, or due to cognitive overload. In

such situations, the system needs to either drive the operator’s focus of attention toward

relevant information or lower the amount of disruption caused by the information being

presented to the operator. Depending on the circumstances, choosing one mechanism

over another can lead to additional failure modes.

Finally, the system canmanage attention to preempt potential errors by precluding the

operator from performing certain actions by estimating the intention of the operator.

However, such detection mechanisms need to be reliable within the application domain

or they can lead to further unexpected operator behavior and potential failure modes.

An attentionmanagement system can be seen as a type of human-machine teaming in

which the AI tries to affect operator behavior in order to influence their task performance.
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Moreover, as the system is continuously monitoring the operator and application state, it

can use this state information to adapt its level of influence accordingly. This adaptation

capabilitymeans that the system can vary its level of automation during operation. Within

the 10-point system automation model of Parasuraman et al. [17], an attention manage-

ment system alternates between levels 1, 2, and 3 during operation, where level 1 provides

no assistance, level 2 makes the system provide all possible alternative actions/decisions

to the operator, and level 3 reduces the number of decisions for the operator. However,

while level 3 automation reduces the number of decisions for the operator by changing

the saliency of certain targets, it still permits the operator to remain in full control as

all decision options continue to be visible and accessible to the operator at all times.

Ensuring that the systemmanages the switch between the automation levels is a strength

of the system’s capabilities, but also a source of risk.

3 Risk management of attention aware systems

Risk management is carried out to ensure risks are understood and under control in order

to prevent risks frommaterializing into incidents.We define risk as the likelihood of unde-

sirable behavior in the joint human-machine system multiplied by the impact of such

undesirable behavior happening.

Hubbard [18] defines risk management as: “The identification, assessment, and prior-

itization of risks followed by coordinated and economical application of resources tomin-

imize, monitor, and control the probability and/or impact of unfortunate events.” For

reference, risk analysis is the systematic identification of potential sources of harm—

hazards—and their risks. Risk management is the entire process of identifying hazards

and subsequently analyzing and controlling risks. In other words, risk management

encompasses hazard identification, risk estimation, risk evaluation, risk control, and risk

monitoring.

Before a risk management strategy can be developed, it is first necessary to perform a

risk analysis. The first step in risk analysis is to define the system boundary around the

joint human-machine system.Wewill only consider risks within the boundary. In practice,

deciding on a system boundary requires careful reflection, as it is vital any that relevant

factor to eventual risk is captured within the system boundary. Having set the system

boundary, the system within the boundary can be mapped out so that it is fully under-

stood. This can, for example, involve decomposing the system’s overall function into func-

tion structures and constructing diagrams indicating the flow of signals and other

information.

Having set the system boundary and mapped out the system, it is possible to identify

hazards and estimate risks. However, this is not always straightforward, as we discuss later

on. Another challenge is quantifying risks in terms of their impact and their frequency of

occurrence. Assessing their impact can be difficult, as it may not always be known what

other undesirable behavior may manifest as a result of a single risk materializing into an

undesirable event. Assessing individual risks is important, as it is critical to be able to
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understand the level of risk in subsystems and the system as a whole in order to determine

an overall acceptable level of risk.

Having identified all hazards and estimated the risks, these risks now need to be

managed—monitored and controlled—throughout the operating life of the joint

human-machine system. Risk management methods provide established processes for

achieving this and they may be qualitative or quantitative. When developing a risk

management strategy for an AI-assisted joint human-machine system, both types of

methodologies may be required. In general, systematic approaches are required, as risk

assessment depends on human judgment and humans have a tendency to underestimate

or overlook risks.

Attention aware systems are AI-assisted joint human-machine systems that

involve multiple stakeholders. They depend on multiple external systems and require

extensive parameterization to function correctly. Since each specific deployment has its

own associated specific domain risks, the risk of experiencing undesirable behavior is

very high.

In the event of undesirable behavior, the repercussions can affect multiple stake-

holders and it may be difficult to attribute responsibility. Let us consider the following

simple scenario: the system reduces the saliency of a piece of information that needs

to be considered by the operator during a specific task and, as a result of this, the operator

fails to perceive the information and does not complete the task in a timely manner. In

such a situation, it is not obvious where to attribute responsibility or determine the root

cause. The information was always visible to the operator, and while the system increased

the saliency of alternative information, or reduced the relevant information’s saliency,

these actions ultimately amounted to the system incorrectly managing the operator’s

focus of attention. Nevertheless, throughout this process, the operator still remained in

full control, having access to all relevant information.

To ameliorate such scenarios, we will draw attention to some strategies that can be

considered whenmanaging the risks of such systems and highlight potential specific risks

that may arise in deployment.

4 Risk management considerations

Our purpose is to draw attention to some considerations when developing a risk manage-

ment strategy for attentionmanagement systems. As such, we focus mainly on the poten-

tial sources of risks, the stakeholders involved, and the importance of evaluating the

effectiveness of the risk management strategy.

As explained in Section 2, an AI-assisted attention aware system is in between a fully

manual system (no automation) and a fully autonomous system (full automation). A key

difference compared to a fully autonomous system is that operators remain in full control

of operation (i.e., there is no action automation). An AI-assisted attention aware system

manipulates the presentation of information the operator receives without direct operator

control.
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Successful operation of an AI-assisted attention aware systemwill depend primarily on

three factors: (1) domain context including task complexity; (2) the joint human-machine

system’s parameterization; and (3) factors relating to the individual operator, or team of

operators, such as skill level, experience, and behavior.

A complication that is unique to such a human-in-the-loop system is that the

AI-assisted functionality can possibly generate actions that are unthinkable or otherwise

confusing to human operators, such as hiding relevant information from operators

because the AI-assistive function disagrees with the operator on its relevance. We briefly

mentioned this when we gave an example of a failure scenario in Section 3.

While the risk of any AI-assisted attention aware system is coupled to a particular sys-

tem configuration and domain, we have identified four general sources of risk that are

likely to require substantial attention when riskmanaging such systems. These are (1) sys-

tem failures, (2) incorrect parameterization, (3) operator characteristics, and (4) domain

context characteristics.

Some risks can arise individually or out of interactions between the stakeholders

involved. The stakeholders of such a system include the operators, the people responsible

for parameterizing the system, any entity that is directly or indirectly controlled by the

operator through the system, the organization providing the system, and the organization

managing and employing the operator.

System failures are all failures that involve the systemnot operating as intended despite

being correctly parameterized. This can involve both software failures, such as program

bugs, and hardware failures, such as loose cables or sensor errors. As described in

Section 2, the system depends on four incoming signals: (1) the external performance

data, (2) the output of the application, (3) the prioritized targets, and (4) the operator sen-

sor data. Each of these signals can fail or operate at different reliability levels. Any risk

management strategy needs to consider the levels of possible operation and their impact

on overall system operability.

Parameterization errors can lead to undesirable behavior as a result of the systembeing

incorrectly configured. For example, depending on the metrics the system is monitoring

and the thresholds it uses as the basis for intervention deployment decisions, the system

may react in completely different ways under the same circumstances. Similarly, the

mechanisms set up for manipulating target saliencies will need to match the context

and requirements of the application domain. For example, simple color mismatches

can result in catastrophic failure situations with operators misunderstanding the impor-

tance of the information they are presented with.

Operator characteristics are another general source of risk. The operator can be out-of-

phase with the system, which can result in undesirable behavior as a result of the operator

misunderstanding the system’s interventions or the system misunderstanding the opera-

tor’s actions. The former situation can happen if the operator is unaware of the specifics of

an intervention, despite the systembeing correctly parameterized. The latter situation can

arise due to a variety of reasons, including parameterization errors, system failures, or

unexpected or unknown operator behavior.
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Domain context characteristics are another source of risk, as such characteristics can

cause the system to react in an unexpectedmanner to unaccounted inputs and thus result

in the system generating undefined behavior. Examples of risks associated with domain

context characteristics include targets changing their visual appearance (e.g., if a new type

of mine is encountered by a submarine demining vehicle), unexpected task complexities,

such as a sudden rapid explosion of targets on a display, or a sudden unexpected situation,

such as an unexpected incident situation in an air-traffic-control system.

Further, interactions between stakeholders can cause many undesirable outcomes.

These may range from miscommunication to an inability to maintain proper records

about what parameterizations are required for deployment. In Section 5, we discuss some

diagrammatic methods of representing various aspects of information circulation and

communication to help identify any associated risks.

Finally, once risk assessments have been carried out and mitigation strategies have

been developed, it is important to monitor and evaluate the efficacy of risk management.

Since the behavior of AI-assisted attention aware systems depends on both specific

deployment situations and operators, new risks may arise from such system dynamics.

It is also possible that emergent behavior caused by interventions may give rise to new

unanticipated risks. As such, it is necessary to continuously monitor and evaluate risks

throughout the lifetime of the system.

5 Risk management approaches

Risk management consists of carrying out the following tasks: (1) identifying the system

boundary, (2) mapping the system, (3) identifying hazards, (4) assessing risks, and (5)

devising suitable strategies to manage/mitigate risks.

However, not all of these tasks can always be carried out in this order. For example,

sometimes the system boundary is not clear until all relevant components and subsys-

tems have been identified. Therefore, it is necessary to first understand the system and

all its components and subsystems. This process is known as system mapping.

Diagrams are very helpful for system mapping. Such diagrams can, for example, cap-

ture the people involved and their functions, the information flowing between people, and

the system or the organization that the system is embedded within. Organizational dia-

grams are useful for determining the people involved, their roles, and their relationships

with other people. Organizational diagrams can also help with understanding the scope

and determining the boundaries of all involved entities. Information diagrams can be used

to capture the relationships between documents in the system. Communication diagrams

reveal how information flows between stakeholders and other entities in the system. The

latter can be of particular importance if system parameterization changes need to be

requested or acted upon. These diagrams also provide context for the system operator’s

role in the entire communication structure of the organization.

Once the system has been mapped out it is possible to assess risks. There are many

well-established methods for risk assessment. In this work, we focus on three methods,

which were briefly introduced earlier.
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FMEA is a method for identifying potential failure modes in products or processes and

devising correctivemeasures to address the resulting associated risks. A failuremode is the

manner in which a system, mechanism, or component fails to fulfill its function. Once a

failure mode has been identified, its effect, severity, and cause can be determined. FMEA

involves identifying the issues related to failuremodes, ranking them by their importance,

and devising corrective measures for issues with serious concerns. In addition to identi-

fying failure modes, FMEA helps with establishing failure rates and root causes of known

failures. The advantage of using FMEA is that it is good at systematically cataloging all pos-

sible sources of failure. As such, an FMEA is ideal for collecting information and exchang-

ing it between teams. This helps with the early identification of potential sources of failure.

FMEA is not designed to demonstrate how robust a system is to multiple failures, or fail-

ures due to external events. Another weakness FMEA shares with many other risk assess-

ment methods is that an FMEA can become too large to be effectively maintained and

understood.

FTA is used to trace a failure path to identify all the events that lead to said failure. Fault

trees are normally represented graphically, with each event connected through logic gates.

Tracing events also allows for identifying the components involved in the failure. Once the

components and the events that lead to the failure have been identified, it is possible to

develop a strategy to prevent it from reoccurring. FTA is a top-down approach that allows

the mapping of the dependencies of each event and the calculation of the probabilities of

specific failures, provided that the probabilities of the events involved are known. An

advantage of FTA is that it allows analyzing the effects of initiating faults, which is the

opposite of FMEA. Additionally, FTA allows analyzing multiple complex failures taking

place at the same time. An FTAwill consider external events, which is useful for assessing

how robust a system is against single and multiple failures. A disadvantage, however, is

that FTA is not suitable for finding all possible initiating faults.

ETA is used to determine the probability of a specific event occurring based on the

probability of the chronological sequence of events leading up to it. ETA is useful for deter-

mining the effect that a particular failure can have on the overall system. The approach is

inductive and follows a bottom-up approach. An advantage of ETA is that it enables the

assessment of multiple simultaneous functions in both failure and success states. This is

useful, as events do not need to be anticipated as they are only the starting point. An ETA is

also useful for identifying single sources of failures and system paths that can lead to fail-

ure. Additionally, an ETA is suitable for modeling complex systems, as it can visualize

cause-and-effect relationships. Finally, an ETA allows tracing faults across boundaries

of subsystems. A disadvantage of ETA is that it always starts with one initiating event at

a time, which must be identified before commencing the analysis. Another disadvantage

is that partial successes and failures are not accounted for.

As with any new technology, AI-assisted attention aware systems present new chal-

lenges in terms of configuration and deployment. Organizations deploying such systems

need tomake sure that they canmanage evolving requirements and potential new sources

of undesirable outcomes. Most importantly, they need to ensure that appropriate mech-

anisms are in place to mitigate possible unexpected undesirable outcomes.
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To ensure that risk management strategies are effective, they need to be continuously

evaluated by systematic monitoring and evaluation of risk at all levels in the system.

Exactly how this is to be carried out is dependent on the precise application domain. Nev-

ertheless, ensuring reliable accounting of all registered failures and undesirable events, as

well as continuous monitoring of risk rates in the system, is critical to fully understanding

the level of risk in the system and the efficacy of any active risk management strategies.

Additionally, monitoring the effects of mitigation procedures can also assist system eval-

uation. Finally, ensuring that the cost and effort of each strategy are yielding a comparable

risk reduction benefit is of utmost importance for ensuring organizations optimize their

use of available resources.

6 Discussion and conclusions

Applying risk management strategies to AI-assisted attention aware systems provides

many benefits. First, it allows early detection of potential human-machine system failures

and the creation of appropriatemitigation andmonitoring strategies to eliminate, reduce,

and track the effects of such failures. Mitigation strategies can range from improving the

design of a system to increasing redundancy, which simply incorporates a verification

mechanism that prevents miscommunications or errors.

A second benefit is that risk management strategies can provide assurance that some

minimum level of safety has been considered. This is of particular benefit for organiza-

tions as they want to ensure that their products are reliable and safe and their reputations

maintained. Moreover, in some domains, implementing appropriate risk management

strategies is part of the obligations necessary for regulatory compliance or adherence

to ethical standards.

As explained in this chapter, AI-assisted attention aware systems are human-in-the-

loop systems with multiple sources of failure. In addition, they are often meant to be used

in safety-critical operations. They present challenges similar to those presented by fully

autonomous AI systems, as well as additional risks caused by the reliance on human oper-

ators and the resultant human-AI interaction. As with any AI system designed for

decision-making, the adaptive nature of the system can make it difficult to identify the

root cause of a fault or undesired outcome. For example, the operator can fail to perceive

a target due to a system intervening in a way that ends up obfuscating the target. While

such a target is always visible to the operator, the system intervention actively diverts

the operator’s attention away from the target.

We also highlight that identifying risk in AI-assisted attention aware systems can be

challenging. This is because it is not always evident what the source of a particular failure

or undesirable event is, or how frequently it occurs. We advocate a systematic approach

and, as a first step, suggest three widely used risk assessment strategies: FMEA, FTA, and

ETA. These methodologies provide both quantitative and qualitative analysis mecha-

nisms. FMEA is suitable for devising corrective measures for all possible faults. ETA is use-

ful for identifying what other failures can occur as a result of specific undesirable events or

failures. FTA focuses on identifying the factors that lead to certain faults.
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To help the discovery of risks in AI-assisted attention aware systems, Section 4 presents

four general sources of risks. These are (1) system failures, (2) incorrect parameterization,

(3) operator characteristics, and (4) domain context characteristics. The first source

involves failures in software or hardware. The second source encompasses configuration

errors that fundamentally affect overall system behavior. The third source accounts for the

operator failing to understand the system’s interventions or the system not understanding

the operator’s behavior. The fourth source relates to the joint human-machine system fail-

ing to manage unexpected changes or other aspects of the application domain itself.

We predict AI-assisted attention aware systems will be increasingly critical as human-

in-the-loop systems become increasingly sophisticated and prominent in application

domains ranging from security and air-traffic control to manufacturing and healthcare.

However, such systems also introduce additional complexities, which give rise to addi-

tional risk. This chapter is a first step toward tailored risk management approaches for

such systems.
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