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ABSTRACT
This paper studies how users perceive their own performance
in two alternative user interfaces. We extend methodology
from psychophysics to the study of interactive performance
and conduct two experiments in order to create a model of
users’ perception of their own performance. In our studies,
two interfaces are sequentially used in a pointing task, and
users are asked to rate in which interface their performance
was higher. We first differentiate the effects of objective
performance (speed and accuracy) versus interface qualities
(distance between elements and width of elements) on per-
ceived performance. We then derive a model that predicts the
amount of change required in an interface for users to reliably
detect a difference. The model is useful as a heuristic for pre-
dicting if a new interface design is better enough for users to
reliably appreciate the obtained gain in user performance. We
validate the model via a separate user study, and conclude by
discussing how to apply our findings to design problems.

Author Keywords
Perception of user performance; psychophysics

ACM Classification Keywords
H.5.2 Information Interfaces and Presentation: User Inter-
faces—Theory and methods

INTRODUCTION
Present-day computer users are bombarded with possibilities
to upgrade, modify, and switch software and hardware. Such
changes trigger them to exercise judgment on the interface
being presented to them. This could encompass the study of
their perceived utility, perceived usability, or perceived user
performance. This paper focuses on the perception of perfor-
mance.

Despite the obvious importance of this topic to human-
computer interaction (HCI), the question of how users per-
ceive changes in interactive performance has not received se-
rious attention. Knowledge on this topic would help design-
ers with many tasks where they usually have to run empirical
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Figure 1. The experimental method in this paper is based on retrospec-
tive subjective comparison of two interfaces. Trial 1 and Trial 2 are
followed by a rating screen.

studies. For example, interface designers could focus on us-
ability features where noticeable differences can be gained
and marketers could focus advertisements of a new interface
on aspects of an interface that users will most likely recog-
nize as improvements. Theories and designers’ conceptions
of user experience [11, 12] make the point that it is not ob-
jective performance that matters but the user’s experience and
perception of it. However, the link between the perception of
user performance and user interface design is not well under-
stood.

This paper builds on psychophysics methods to study users’
perception of which of two interfaces yields better perfor-
mance for the same HCI task. In computer science, psy-
chophysical models are used to optimize computer graphics
[19], image processing [17], haptics [2], audio [27], and video
[13]. In HCI, some psychophysics laws have gained recogni-
tion as design guidelines [14]. However, research has been
limited to time perception, with applications to system re-
sponse times and progress bars [10, 21].

Our goal is to extend psychophysical methodology to inter-
active tasks. One challenge is that user performance is not
passive perception—it involves active engagement of the user
over a longer period of time. Another challenge is that the
standard psychophysics experiments typically consider rela-
tionships between two variables [5, 24]. However, user per-
formance cannot be reduced to a single quality: users can
base their judgment on two main categories of cues: per-
ceived qualities of the interface and perceived qualities of the
user’s own sensorimotor performance. Important instances of
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the former in HCI are the size, distance, and density of inter-
face elements. Examples of the latter are the speed and num-
ber of errors when performing a task, which constitute human
performance more generally [20]. Complicating this further
is the fact that such variables are necessarily interrelated. For
example, a new design that enlarges the sizes of the targets,
also affects the time and accuracy of users’ target selections.
For these reasons, the standard psychophysical methodology
has not been readily applicable to interactive tasks.

The method we introduce in this paper includes an aimed
movement task consecutively carried out with two alternative
designs: the standard (the “old” interface), and the alternative
(the “new” interface). A participant completes a tapping task
with one design (Trial 1), then completes the same task with
another design (Trial 2), and is finally asked to rate in which
his or her performance was better (Figure 1). This emulates
the use of two interfaces that are compared retrospectively.
We regard perception of user performance as a second-order
representation that is most likely constructed based on other,
more directly experienced aspects of interaction. We hypoth-
esize the most important to be: speed and accuracy of aimed
movements and visual qualities of the interface, such as the
distance to and the width of the target.

The key to our experimental design is that we manipulate in-
dex of difficulty (ID) (see for example [15, 20]) to exert a
predictable effect on user performance. ID is the difficulty
of movement required to select an interface element with a
distance D and a width W; ID = log2

(
D
W + 1

)
. By manip-

ulating ID , and thus the difficulty of sensorimotor responses,
we emulate the fact that the alternative design changes the
user performance only indirectly: by affecting the demands
placed on sensorimotor control and by changing the percep-
tion of the layout.

ID is controlled in two ways in the two experiments reported
here. In Experiment 1, we keep the ID of the standard and the
alternative design constant, but we change D (distance) and
W (width). In Experiment 2, we use a staircasing method:
the ∆ID between the standard and the alternative interface
is gradually increased until the user can reliably notice the
difference in performance. These two manipulations allow us
to address two central research questions:

Experiment 1: What are the criteria users use to judge that
performance in one design is better than an alternative de-
sign?

Experiment 2: How large does a difference in user perfor-
mance have to be for users to reliably notice it?

The two experiments map to two common decision contexts
in interface design. Experiment 1 addresses what we call a
within-ID design. In this case, the qualities of interface ele-
ments cannot be changed independently of each other. Lim-
ited display space would pose such a scenario: the size of
the elements cannot be changed independent of inter-element
distance. The second experiment addresses the between-ID
case where the qualities of the new design can be changed
independently. For example, smartphones with two different
screen sizes would have different average IDs.

The results from our experiments expose several previously
unreported phenomena on the contribution of different fac-
tors and biases. Based on the experimental data we develop a
predictive model in the form of a mathematical function that
can be used to estimate the percentage of users that will be
able to identify a performance change between two interfaces
with different IDs. Our model characterizes the probability
of a user being able to reliably judge that there is a differ-
ence between two designs with different IDs. This model is
validated via a separate task, a Whac-A-Mole type of game.

In summary, we contribute to the HCI literature by present-
ing a novel variation of a psychophysical method that we have
adapted to interactive tasks. This methodology can be gener-
alized to other studies of user performance in other interactive
tasks. The presented model and obtained results are limited
to target acquisition tasks. While this is a common sub-task
in HCI, for example in command selection and typing [15], it
leaves room for future work on other task domains. We con-
clude this paper with a discussion on how to use of this model
and deploy the method to other task domains.

RELATED WORK
Psychophysics is the study of a human’s perceived ability to
distinguish a difference in physical stimuli and events. The
classic psychophysics model, the Weber–Fechner law, states
that equal stimulus ratios produce equal subjective ratios [24].
The Just Noticeable Difference (JND) is proportional to the
size of the standard stimulus: JND = kS, where S is the size
of the standard stimulus and k is a constant (a so-called Weber
fraction). k is the proportionate increase the standard stim-
ulus needs to change before it can be reliably discriminated.
JND thresholds using the Weber–Fechner law and other mod-
els have been charted for perceptual events and for user inter-
face qualities one can expect to be relevant: visual length and
area, visual distance, visual velocity, visual flash rate, and du-
ration [24].

Psychophysics research in HCI has focused on time percep-
tion, with applications to system response time and progress
bars (e.g,. [10, 21]). Recently, cognitive load was found to
affect time perception in an HCI task [3]. We are unaware
of work in HCI addressing aspects of interactive tasks more
broadly.

Evidence from psychology suggests that interactive perfor-
mance can turn out to be special. Studies in psychology
have found time perception to be affected by the allocation
of attention during the task and the structuring of the stim-
ulus environment [8]. Both attention and the stimulus en-
vironment are affected by the interface. More generally, it
has been found that judgment tasks that involve action by the
perceiver at times differ from passive tasks. In such cases,
JND functions are not always Weberian and complex inter-
actions emerge. Such tasks include the perception of mo-
tion as opposed to stationary stimuli [26] and visually-guided
grasping [6]. Moreover, JND thresholds can change during
an action. For instance, a moving hand is less sensitive to
external stimuli than a static hand [18, 25]. Another compli-
cation is posed by multimodal perception. Visual and haptic
information can produce superior discrimination when used
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jointly, compared to using either modality alone [7]. Simi-
lar multimodal-unimodal differences have been reported else-
where (e.g. [4, 22]).

Given this brief overview, we deduce two requirements for
our experimental method. First, the Weber–Fechner law, or
any other known JND function, cannot be expected to apply.
Thus the experimental method should allow a function of any
shape to emerge. Second, the experimental method must be
able to link perception to both 1) the observable qualities of
the interface and 2) the observable qualities of performance.

GENERAL APPROACH
Our research interest is exploratory and encompasses two
goals: The first is to understand the factors that affect the per-
ception of user performance and the second is to chart JND
thresholds for user performance.

Within a range of commonly studied HCI tasks—such as nav-
igation, command selection and search—we chose target ac-
quisition [15] for two reasons. First, visually controlled dis-
crete aimed movements executed with the hand are prevalent
in present-day HCI, and thus studies of target acquisition are
relevant to a wide range of user interfaces. Second, there ex-
ists a well-established predictive model that links interface
characteristics with user performance for target acquisition.
Fitts’ law [15, 23] predicts the movement time (MT ) required
for a user to hit a target with width W at distance D as:

MT = a + bID = a + b log2

(
D

W
+ 1

)
, (1)

where a and b are empirically determined parameters1. Fitts’
law implies that a user’s information capacity, as measured
by throughput (TP ) in bits/s, stays relatively constant as a
function of ID [23]2:

TP =
ID

MT
. (2)

The two experiments in this paper exploit this tendency.

In Experiment 1, we hold ID constant and change D and W
within an ID condition. This means that MT should stay at
the same level for the the two to-be-compared interfaces, al-
though the interface qualities D and W change. If judgments
are based on TP , they should not favor either interface. If
this is not the case, we will be able to assess the individual
contributions of speed, accuracy, D, and W .

In Experiment 2, we manipulate ID with a so-called stair-
casing method [5]. We start from a minimum difference be-
tween two interfaces and subsequently increase the difference
between the IDs (∆ID) with a constant step size until par-
ticipants are able to reliably tell that their performance has
changed. This exploits the prediction of Fitts’ law that in-
creasing ∆ID increases the difference in MT as well (and
possibly inaccuracy). The staircasing method thus allows
charting judgment reliability as a function of ∆ID .
1We use the Shannon variant of ID since the values are positive
[15].
2For a critical view of this standard approach, see Guiard and Olafs-
dottir [9].

Knowing that aimed movements at different scales can be as-
sociated with different sensorimotor requirements3, we sam-
ple the whole permissible range of IDs afforded by a large
interactive surface (a Microsoft PixelSense, model Samsung
SUR40). In the two experiments, we study four base-ID con-
ditions ranging from very small (ID = 1.2, or “tray icon-
sized”) to large but still comfortable targets (ID = 2.4, simi-
lar to the Windows Start Menu). This allows us to examine if
the size of the standard ID affects JND thresholds similar to
the Weber-Fechner law.

To measure perception we use a rating scale where two se-
quentially used interfaces are directly compared on a slider
ranging from −100 to 0 to +100. Participants are instructed
to use the slider to express in which interface he or she ex-
perienced a “better performance”. Performance is explained
as the combination of how quickly and how accurately they
were able to do the task [20]. Although rating is a motor task,
we do not expect this to affect the reported differences. A
measurement via a rating allows participants to use whatever
criteria they deem reasonable to make the judgment. More-
over, the scalar value allows them to express their level of
certainty. The known drawbacks of the rating scale are non-
linearity of responses, order effects, and scale non-uniformity
[5]. We address these in our analysis by making no assump-
tions of linearity or uniformity, and in the experimental design
by randomizing the order of interfaces.

EXPERIMENT 1: CONSTANT INDEX OF DIFFICULTY
Our first experiment investigated if perception of perfor-
mance is affected by four variables that characterize user
performance—perceivable interface qualities: the width W
and the distance D between targets; and objective perfor-
mance qualities: speed and accuracy.

The ID of the two to-be-compared interfaces was kept con-
stant, but W and D were manipulated. In order to examine
if sensorimotor demands affect users’ perception of perfor-
mance, we investigated four different IDs.

Method

Participants and Experimental Design
We recruited 18 participants from a university campus. The
mean age was 24 years, ranging from 19 to 31 years (sd =
3.2). Eight were female, ten were male. Their sight was nor-
mal or corrected-to-normal, and they reported no motor or
neural disorders.

The experiment was a within-subjects design with one inde-
pendent variable, ID , with four levels: 1.2, 1.6, 2.0 and 2.4.
Sixty trials were carried out in each ID condition by each
participant, each trial consisting of two interface designs. Par-
ticipants performed eight target acquisition tasks in each in-
terface design per trial. A trial consisted of two successive
sub-trials followed by a rating task in which the participant
rated which interface design (the former or the latter, or Trial
1 or Trial 2) resulted in a better perceived performance.

3For example, the wrist and the fingers may be used more for targets
with small D and W .
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Figure 2. Contributions of Time, Error, Distance, and Width on the perception of performance in Experiment 1. Markers denote observed means for
each bin, lines are regression models described in Table 1. The x-axes show the differences between interfaces in Trial 1 and Trial 2, the y-axes show
the ratings: positive values refer to a preference for Trial 2 (the latter interface), while negative values refer to a preference for Trial 1.

For each trial, D and W were randomly sampled from a
uniform distribution covering all permissible combinations
within the ID condition. W was restricted to an interval rang-
ing from 30 pixels (13.84 mm) to 173 pixels (79.80 mm) and
D to an interval ranging from 39 pixels (17.99 mm) to 740
pixels (341.33 mm). The minimum D was limited by the fea-
sibility of the minimum width for the smallest ID , while the
maximum D was based on the screen resolution. ID condi-
tions were balanced using a Latin square design.

Apparatus
The experiment was carried out on a Microsoft PixelSense,
model Samsung SUR40. It had a resolution of 1920 × 1080
pixels (885.6 x 498.15 mm). The experimental software was
developed in C# and used the Microsoft XNA framework
and the Surface SDK. The software was designed to register
touches through the surface API. A tolerance threshold was
used in order to mitigate tracking errors that may occur on
the apparatus for very fast movements. The precision of the
timing data was in the order of microseconds.

Task and Procedure
Before starting the experiment, participants were instructed to
familiarize themselves with the interface. The experimental

task consisted of tapping two targets presented on the surface,
sequentially, and as fast as possible without missing the tar-
get (see Figure 1). The current target was highlighted with a
green color. The target areas were shaped as vertical columns,
as in the original Fitts’ unidimensional tapping task. Partici-
pants were instructed to aim for the middle part of the column
that contained the target. However, the whole column was
considered the target from the system’s point of view. If the
participant missed the target but was still within the tolerance
range defined by the column, the system accepted the touch.

Each task had two interfaces (Trial 1 and Trial 2) followed by
a judging task. Each trial consisted of eight reciprocal target
acquisition tasks for a particular interface. Afterwards, the
participant made a judgment on the performance of the inter-
faces by providing a rating on a continuous rating scale shown
as a slider on the display (see Figure 1). The numbers “1” and
“2” referred to the first and second interface with the corre-
sponding label. Participants were instructed to treat the slider
as a continuous rating scale, where the mid point was 0%
difference in the interfaces, and each extreme meant a 100%
difference in favor of either interface 1 or 2. We instructed
participants to think of “performance” as the combination of
how quickly and how accurately they were able to do the task.
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In total, each participants performed 240 judging tasks (60
trials × 4 IDs), with two types of breaks interleaved to pre-
vent fatigue. A 20-second break was scheduled for every 10
pairs of trials and a 1.5 minute break was scheduled for every
50 pairs of trials.

Results
The dependent variable Rating was calculated from the posi-
tion of the slider as positioned by the participant. The left end
of the slider was mapped to -100%, i.e. completely better per-
formance in Trial 1 and the right end of the slider was mapped
to +100%, i.e. completely better performance in Trial 2.

The predictive variables were calculated as the difference be-
tween Trial 1 and 2. Time was calculated as the difference in
time taken to complete the tapping task in milliseconds, Error
was calculated as the difference between the number of taps
outside the target, Distance was calculated as the difference
in the distance between the targets, and Width was calculated
as the difference in the widths of the targets.

We here report general observations from the data and pro-
vide models for the effect of Time, Error, Distance, and
Width. Observations outside three standard deviations were
removed. Remaining ratings were grouped into bins per
dependent variable, each bin containing roughly the same
amount of observations. Binning for Distance, Width and
Time was done by allocating 8 bins covering the entire range
for each ID condition. The sizes of the bins increases with
each ID as higher IDs span over greater ranges. Within each
ID, bins also increase in width for larger values. For Error
however, only the bins at either extreme contain more than
one error value, all others contain a single error value.

Recency Bias
Overall, the average rating is close to zero, which is expected,
because the ID was held constant and the order was ran-
domized in both interfaces. However, participants demon-
strated a slight recency bias—a bias towards the second and
more recent interface they used (the second sub-trial) under
all ID conditions. The bias was particularly pronounced in
the lowest-ID condition. Calculated biases for IDs 1.2, 1.6,
2.0 and 2.4 were 5.80%, 1.35%, 3.94% and 3.82%.

Effects of Time, Error, Distance and Width
Figure 2 shows the effects of Time, Error, Distance, and
Width, respectively. The markers represent the averaged ob-
servations per bin and the curves the fitted models listed in
Table 1. Ratings range from -100.00% to 100.00%, where
negative values correspond to a perception of better perfor-
mance in the first interface (Trial 1), and positive values to
better performance in the second interface (Trial 2). A rat-
ing of 0% expresses no noticeable difference. The following
observations were made on the effects of the variables on the
perception of user performance:

1. Time: Time had the strongest effect. Figure 2 shows a
strong correlation between the rating and Time. The plot
also reveals that the ∆Time required for participants to
adjust the rating was affected by the ID condition. For
ID = 1.2 the time difference was 500 ms, for 1.6 it was

Regression Model
Time ID R2

4.04 × 10−8x3 + 2.99 × 10−6x2 − 4.50 × 10−2x + 4.50 1.2 0.88
1.00 × 10−7x3 + 1.05 × 10−5x2 − 7.67 × 10−2x − 1.34 1.6 0.79
3.36 × 10−8x3 − 9.63 × 10−6x2 − 7.32 × 10−2x + 2.88 2 0.96
1.30 × 10−8x3 − 9.28 × 10−7x2 − 5.60 × 10−2x + 2.50 2.4 0.98
Error
3.47 × 10−1x3 − 7.13 × 10−1x2 − 1.88x + 5.87 1.2 0.91
−5.64 × 10−1x3 + 1.55 × 10−1x2 + 5.64x + 2.12 1.6 0.80
−1.73 × 10−1x3 + 1.57x2 + 4.20x + 9.67 × 10−1 2 0.81
−7.56 × 10−1x3 + 3.81 × 10−1x2 + 1.11 × 101x + 1.68 2.4 0.85
Distance
−2.78 × 10−1x + 5.94 1.2 0.51
1.83 × 10−4x3 − 1.50 × 10−3x2 − 7.96 × 10−1x + 2.73 1.6 0.97
1.46 × 10−5x3 + 1.68 × 10−4x2 − 3.92 × 10−1x + 4.04 2 0.94
3.65 × 10−6x3 + 1.24 × 10−4x2 − 2.98 × 10−1x + 1.25 2.4 0.99
Width
5.39 × 10−3x3 + 1.40 × 10−2x2 − 7.65 × 10−1x + 5.42 1.2 0.42
1.47 × 10−3x3 − 6.11 × 10−3x2 − 1.60x + 2.64 1.6 0.97
3.84 × 10−4x3 + 1.57 × 10−3x2 − 1.17x + 3.96 2 0.95
2.85 × 10−4x3 + 2.39 × 10−3x2 − 1.28x + 1.07 2.4 0.99

Table 1. Regression models for the judgment of performance separately
for the independent variables Time, Error Distance and Width for each
of the four base-ID conditions in Experiment 1.

700 ms and for IDs 2.0 and 2.4 they were 1000 ms and
1500 ms respectively. In the case of ID = 1.2, participants
exhibited a clear recency bias. This may be due to the fact
that perceiving a difference in D or W is relatively more
difficult with larger and closer targets.

2. Error: Errors were not always taken into account when
judging performance. ID = 2.4 showed a strong correla-
tion between Error and rating (r = 0.90), while IDs 1.6
and 2.0 had a lower correlation (r = 0.69). For IDs 1.6
and 2.0, participants tended to be biased towards the sec-
ond interface regardless of the number of errors in each
trial. Again, ID = 1.2 is an outlier: participants tended
to rate the first interface as providing higher performance
even if they made more mistakes with it. However, as Fig-
ure 2 shows, this effect was negligible.

3. Distance and width: Figure 2 shows that Distance and
Width affected judging performance for IDs 1.6, 2.0 and
2.4 but, again, ID 1.2 did not provide reliable grounds
for performance judgments. In this case, the ratings were
dominated by the recency bias. This is because the rat-
ings tended to be positive if any difference in D or W was
present.

Regression Models
Table 1 lists the regression models that best explained the
data. Line plots for the models are shown in Figure 2, to-
gether with the observed points. The regression models for
D and W can explain 94–95% of the variance for IDs 1.6–
2.4. Interestingly, these models for ID 1.2 can only explain
51% and 42% of the variance respectively. For ID = 1.2, the
strongest predictor appears to be Error (R2 = 0.91) and Time
(R2 = 0.88). To conclude, except for ID = 1.2, the obser-
vations reported in the previous subsection could be captured
by psychometric functions.

EXPERIMENT 2: STAIRCASING
In Experiment 2, the difference between the two interfaces,
or ∆ID , was manipulated using the staircasing method with
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Figure 3. The number of participants that correctly judged 91% (or
more) of the trials in Experiment 2 as the ∆ID was increased.

a constant increase (0.1) between the steps. We started com-
parisons from four base-ID conditions (1.2, 1.6, 2.0, 2.4), in-
creasing ∆ID of the two to-be-compared interfaces gradually
until the user could notice a difference with >90% reliability.
The term sub-stair refers to a trial with a particular ∆ID .

Method
We here only report the differences in method compared to
Experiment 1.

Participants, Apparatus and Materials
We recruited 16 participants from a university campus. The
mean age was 30.5 years, ranging from 22 to 55 years (sd
= 8.4). Five were female, 11 were male. There sight was
normal or corrected-to-normal, and they reported no motor or
neural disorders. None of the participants had participated in
Experiment 1.

Task and Procedure
Unlike Experiment 1, in Experiment 2 participants were ex-
plicitly told that the ID of the two interfaces (Trial 1 and
2) were different. This was necessary because the differ-
ence would become salient as the ∆ID increased. They were
told that there were four different difficulty levels (base-IDs)
and that promotion to the next level only occurred when they
identified the interface that yielded the highest performance
in more than 90% of the trials (10 out of 11 judgments). They
were instructed to judge their performance using the same
definition of performance provided in Experiment 1. In the
case they could not notice any difference, participants were
instructed to provide their best guess and to avoid a 0% rating.
If a participant was unable to judge a difference correctly by
the 10th attempt, he or she was promoted to the next base-ID .
In the case of the last stair, a limit was set by the maximum
ID allowed. This limit was set because randomly sampling
combinations of D and W for IDs higher than 3.2 provided
too many distances that are far beyond the physical limits im-
posed by the resolution of the multitouch display used in the
experiment. If participants made too many target selection
errors the system beeped and forced the same sub-stair to be
repeated.

Results
Our main dependent variable for Experiment 2, Judgment-
Reliability, was the probability of perceiving an interface with
a lower ID to yield a better user performance. It was calcu-
lated as the proportion of trials correctly judged out of the
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Figure 4. Mean judgment as a function of sub-stair in Experiment 2.
Each base-ID is plotted as a separate line. The plot shows only sub-
stairs that have at least 2/3 of participants remaining. Error bars show
95% confidence intervals.
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Figure 5. Average ∆ID for each minimum Judgment-Reliability level
by stair in Experiment 2.

total trials for a sub-stair. A participant was considered to
judge correctly when he or she rated the sub-trial with the
lower ID as providing higher performance, ultimately reduc-
ing judgment to a binary decision.

Figure 3 shows a histogram of the number of participants that
correctly identified a performance difference on each sub-
stair for each stair-ID . There are two key observations. First,
no stair showed a 100% completion rate; that is, not all par-
ticipants were able to achieve a correct judgment above 90%
before being pushed onto the next stair. Second, completion
rate increased through the stairs. The number of participants
that successfully detected a difference was 13, 14, 15 and 15
for IDs 1.2, 1.6, 2 and 2.4 respectively.

Figure 4 shows mean Judgment-Reliability per sub-stair for
each of the base-IDs. Only sub-stairs including at least 2/3
of the participants are included in the figure, to ensure rep-
resentativeness of the whole user group. Figure 4 reveals the
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shown.
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Figure 7. Average ∆TP required for a 91% reliable judgment in perfor-
mance in Experiment 2, where TP = ID/MT . Error bars show 95%
confidence intervals.

expected trend that the reliability of perceiving a performance
difference increased as participants progressed “up” the sub-
stairs, coinciding with increases in completion rates.

Figure 5 shows the average ∆ID by minimum Judgment-
Reliability. Figure 5 confirms the already mentioned trend
that the reliability increased as participants progressed “up”
the sub-stairs. Moreover, it also shows that the intuition that
can be gained from the histogram in Figure 3 of approxi-
mately six sub-stairs being necessary for most participants
(∼70%) to reliably notice a difference holds. Base-ID = 1.2
is the exception, for reasons observed in Experiment 1: for
this base-ID , participants struggled to reliably judge differ-
ences due to the small changes in Distance and Width.

Relationship between ID and Time
Participants tended to take longer to complete the pointing
task on later stairs. Figure 6 shows the average Time in mil-
liseconds for each sub-stair that still contains at least 2/3 of
the participants. The plot shows that Time remains fairly con-
stant for the first two stairs, but it increases steadily on the
last two stairs, revealing the increased difficulty in tapping
the targets. In other words, there is a linear component as
presumed by Fitts’ law, and some curvature at the extremes
due to changes in sensorimotor demands.

Effect of Throughput (TP )
An outstanding question is to what extent it is (TP ) that is
predictive of Judgment-Reliability, rather than ID .

Figure 7 shows the difference in TP required for a 91% reli-
able judgment, shown as a function of base-TP . TP was cal-
culated as TP = IDe/MT , where IDe = log2((D/We) +
1). We was calculated as 4.133 multiplied by the standard
deviation of all total widths for the condition [15], where a
total width was defined as the distance from the center of the
target to the x-coordinate where the user touched.

If Interface A is able to provide TPa bits/s and Interface B
TPb bits/s, how likely is that difference noticeable? We chose
the 91 percent cut-off as it corresponds to the stair advance
rule used by our method. However, because we did not ma-
nipulate throughput (TP ) but ID in our experiment, we have
a narrower range of TP -differences in the data. This analysis
should therefore be regarded as tentative.

The main observation is that smaller TP differences are re-
quired for larger base-TPs. In other words, when user perfor-
mance is high, only a small difference is required. However,
when it is very high (here, above 1.7 bits/s), TP does not pre-
dict the reliability of judgments. Instead, users use some other
criteria. In contrast, for low-TP conditions, users require a
relatively large (0.35 bits/s) difference. Comparing the curve
to our analysis of ID , we conclude that ID is a more powerful
predictor for this task.

Individual Differences
To learn about individual differences, we split participants
into two groups according to the median of Judgment-
Reliability. “Better judgers” showed a tendency to stick to
two particular strategies when rating their performance: dif-
ferences in Width and Distance, or differences in Time. For
stair-IDs 1.2 and 1.6 these participants judged correctly when
the Time difference was above 500 ms. This practice de-
creased in the higher stairs as the increase in distance reduced
the capacity to estimate Time. Participants instead chose
shorter Distances and smaller Widths (depending on the in-
terface quality they looked at) when being unable to estimate
Time. In contrast, the worse judgers do not reveal an obvious
behavioral pattern.

Modeling
Table 2 presents regression models fitted on the data that pre-
dict the probability that a participant detected a performance
difference for a given ∆ID.

To make the models presented in Table 2 more generalizable
and reduce the proneness to overfitting we set out to identify a

Regression Model ID R2

1.38/
(
1 + e(−0.23−log x)/0.46

)
1.2 0.96

0.88/
(
1 + e(−0.81−log x)/0.24

)
1.6 0.99

1.05/
(
1 + e(−0.73−log x)/0.39

)
2.0 0.98

1.08/
(
1 + e(−0.70−log x)/0.30

)
2.4 0.97

Table 2. Regression models predicting the probability a participant reli-
ably detected a performance difference as a function of ∆ID in Experi-
ment 2.
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simplified general predictive model. We found such a model
in the form of a variant of the logistic function. This model,
referred to as the generalized model from now on, predicts the
probability p(x) that a user will judge his or her performance
as different between two alternative interfaces separated by
an ID step-size of x is:

p(x) =
1

1 + e−(ax−b)
, (3)

where a and b are model parameters. Based on our data we
estimate a = 8, b = 4. The generalized model is shown with
a dashed line in Figure 8 (GenMod). We evaluated this model
against the actual judging data we collected in Experiment 2
and found that it had good fit for the actual observed frequen-
cies of users being able to reliably judge their performance
as being noticeably better for a given ID step-size. The R2

goodness of fits were 0.71 for ID = 1.2, 0.94 for ID = 1.6,
0.92 for ID = 2.0, 0.98 for ID = 2.4, and 0.94 for all IDs.

MODEL VALIDATION STUDY
Having identified the generalized model from data collected
in Experiment 2, we validated its predictive power on an alter-
native task outside of the experimental framework that shaped
its functional form. For this purpose we created a variant of
the Whac-A-Mole game for the Microsoft PixelSense, model
Samsung SUR40. In the game, the user has to hit two sets of
five circular targets (see Figure 9) in a predetermined order as
quickly as possible. Thereafter the user chooses which of the
trials resulted in a higher performance.

Method
Each of the circular targets were set with a constant ID . The
width of the target was sampled uniformly from an interval
between 30 pixels (13.84 mm) and 199 pixels (91.79 mm).
The distance to the target was then fully determined by the
fixed ID and the width of the target. The configuration of
the five targets was randomly generated within the constraints
given above. In the game, when the user hit the “Start” but-
ton a pre-determined circular target was highlighted. The user
was instructed to hit this target as quickly as possible. There-
after another circular target was highlighted. When the user
had hit all the highlighted targets the game was over. The
highlighted sequence guided the user through a series of tar-
get acquisitions that all had the same ID for an individual
game, but all the targets had randomly generated widths and
heights within the constraints given above.

We recruited 11 participants from a university campus. The
average age was 26.3 years, ranging from 20 to 55 years (sd
= 11.2). Five were female, six were male. None of the partic-
ipants had participated in Experiment 1 or 2.

Using the same definition of performance as in Experiment
1 and 2, participants were asked after every two games to
choose the game in which they perceived they experienced a
better performance. Each pair of games compared a particu-
lar base-ID against an alternative ID . To make the results of
our validation exercise stronger we took two measures to re-
duce the possibility of false-positives. First, we took three out
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Figure 8. Cumulative probability of reliable judgment in Experiment
2. The models are rendered for base-IDs, and the generalized model
(see the text) is shown with a dashed line. The plotted points are the
cumulative number of participants that had detected the ID change by
that sub-stair.

Figure 9. An illustration of the Whac-a-Mole game.

of three correct judgments as proof of a participant recogniz-
ing a change in performance, thus the probability of choosing
the correct ID by chance was only 1

8 . Second, we selected
a single base-ID of 0.9. This choice was made based on the
observations from Experiment 2, where we noticed that par-
ticipants had greater difficulty in recognizing differences in
low-ID conditions. Coincidentally, this makes the prediction
task of our generalized model more challenging as the chosen
base-ID for the game is lower than the lowest base-ID of 1.2,
which had the worst R2 fit in Experiment 2.

In the game we compared nine ∆IDs: 0.1, 0.2, . . . , 0.9 for a
single base-ID of 0.9. Thus, the ID comparisons ranged from
0.9–1.8. In total, each user played 1 base-ID × 9 ∆IDs ×
3 pairs of games per ID comparison = 54 games (27 pairs of
games). It took a user circa 7–8 minutes to play all 54 games,
which mimics a typical walk-up use-scenario for a tabletop
interface.

Results
We calculated the probabilities of a user detecting a change
in the base-ID in the data. The procedure was identical to
Experiment 2. We then compared the generalized model of
perceivable performance gain using the same parameters a =
8, b = 4 we found in Experiment 2.
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We found that the judgments about the ID differences in the
game had an R2 goodness of fit of 0.72. This should be com-
pared against the closest comparable base-ID we used in Ex-
periment 2 (ID = 1.2) and its R2 model fit of 0.71, which
was obtained in a much more controlled setup with less noisy
data and more participants. Our good model fit for the game
data indicates that our generalized model of perceivable per-
formance gain does generalize beyond the experimental task
that shaped its functional form and model parameters.

SUMMARY AND DISCUSSION
Psychophysics models are of paramount importance in graph-
ics, audio, and multimedia, thanks to their ability to directly
inform design and engineering. Psychophysics could be a
useful asset in the HCI toolbox, too, if it allows us to make
reliable quantitative predictions about the effect of a change
in an interface on users’ perception of interaction. This paper
has extended the application of psychophysics in HCI from
passive perception to interaction.

To this end, we have presented a method for operationalizing
another important psychophysical dependent variable in HCI:
a user’s perception of his or her own performance in a user in-
terface. By definition, user performance is the efficiency of a
user carrying out a task [20], which in HCI is measured in
terms of speed and accuracy aggregated over acts exhibited
in the course of a task. We have presented an adaptation of
psychophysics methodology into an interactive task. A cen-
tral insight is that a change in interface design assumes its
potential effect via two interconnected routes: via overt per-
ceivable changes and via changes in a user’s objective perfor-
mance. Changing something in a layout may be noticeable
via perception of the elements and/or via how it changes the
speed and accuracy of a user’s performance. This was op-
erationalized by manipulating the difficulty of sensorimotor
movement via ID . We registered both interface qualities and
objective user performance to predict the user’s judgment. A
drawback in comparison to more realistic tasks is that the two
interfaces in our experiments are used immediately after one
another, whereas in actual use they are probably separated
more in time.

The results in this paper provide insights into users’ percep-
tion of interaction. In Experiment 1, we found that:

• Users can indeed reliably judge their performance, but
they also exhibit slight biases. Low-ID conditions were
markedly different from others: interfaces consisting of
large targets close to each other provide no reliable ground
for judging one’s performance.

• Width and Distance are not as important cues as Time:
when interfaces look similar, the differences in the user’s
own performance dominate the judgment.

In Experiment 2, a staircasing design enabled us to learn what
happens when ID changes between two to-be-compared in-
terfaces. We learned that, depending on the base-ID , users’
judgment capabilities change. In particular:

• For small base-IDs, users struggle to consistently identify
differences.

• Higher base-IDs perform better because participants can
obtain more information to make their judgment, such as
greater changes in Distance, Width and Time. These differ-
ences are needed to improve the reliability of users’ judg-
ments.

• Throughput (TP ) is not as strong a predictor as ID is.
Judgment reliability seems to only be predictable for low-
TPs.

• In no case was the user’s perception of performance re-
ducible to ID alone, which confirms that the perception of
performance is disjoint from actual performance as mea-
sured by TP .

• There are inter-subject differences in judgment ability.

Further, we have discovered a mathematical model that pre-
dicts the probability that a user will notice a performance dif-
ference, as defined by a change in ID . The model was vali-
dated in a Whac-A-Mole game, which demonstrated that the
model’s predictions generalized to at least one other HCI task
involving discrete aimed movement.

However, we acknowledge that there could be other effects
influencing the user, which he or she could not perceive, es-
pecially over a prolonged period of time. For example, when
the visual layout is more complex, users will have more cues
than distance and width of targets that they can use to as-
sess the user interface. Moreover, when the interaction task
is a compound task (i.e. it consists of many subtasks), users
might base their performance judgments with respect to any
of the subtasks. However, we believe that the results in this
paper are promising enough to motivate further research in
this direction.

Application to Design Problems
Currently, the models derived in this paper can be considered
heuristics for interfaces where pointing is important. Such
activities involve command selection (menus, hotkeys, etc.),
text entry and gaming.

The regression models in Table 1 require knowing the ID of
the two user interfaces to be compared, and the difference
that is most pronounced between them: this can be the user’s
speed, accuracy, target distances, or target widths. A model
should be selected based on this information.

The regressions models in Table 2 require knowing the IDs
of the two user interfaces that are being compared. The lower
of these should match or must be matched to the closest base-
ID in the table. The output of the model is an estimation of
the probability that a user will be able to reliably notice the
difference in user performance.

It is important to note that the regression models in Table 2 are
likely to suffer from overfitting. For general design problems
we recommend using the generalized model in Equation 3.

CONCLUSIONS
Psychophysics modeling could have numerous applications
in HCI beyond its current limited use. We envision that the
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ability to better anticipate the subjective perception of interac-
tion might save substantial money in interface development.

The methodology presented in this paper is a starting point for
understanding the perception of user performance more fully.
With little effort, the paradigm could be extended to contin-
uous aimed movements [1], allowing the study of steering
and pursuit tasks common in for example gaming and driv-
ing. The methodology can also be extended to tasks involving
timing and rhythm, such as music [16]. To extend it beyond
aimed movements, the challenge is to find models that allow
manipulating user performance with predictable effects.
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