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Computational methods can potentially facilitate user interface design by complementing designer intuition, prior experience,
and personal preference. Framing a user interface design task as a multi-objective optimization problem can help with
operationalizing and structuring this process at the expense of designer agency and experience. While offering a systematic
means of exploring the design space, the optimization process cannot typically leverage the designer’s expertise in quickly
identifying that a given ‘bad’ design is not worth evaluating. We here examine a cooperative approach where both the designer
and optimization process share a common goal, and work in partnership by establishing a shared understanding of the design
space. We tackle the research question: how can we foster cooperation between the designer and a systematic optimization
process in order to best leverage their combined strength? We introduce and present an evaluation of a cooperative approach
that allows the user to express their design insight and work in concert with a multi-objective design process. We find that
the cooperative approach successfully encourages designers to explore more widely in the design space than when they are
working without assistance from an optimization process. The cooperative approach also delivers design outcomes that are
comparable to an optimization process run without any direct designer input, but achieves this with greater efficiency and
substantially higher designer engagement levels.

CCS Concepts: • Human-centered computing → Interaction design process and methods.

Additional Key Words and Phrases: Interaction Technique; Interface Design; Bayesian optimization

1 INTRODUCTION
Design can be framed as a multi-objective optimization problem in which design parameters are selected to
maximize user outcomes [25]. Framing design in this way can help to systematize the process of arriving at
a final design configuration but eliminating the role of the human designer is not without cost. Removing
the human designer may have detrimental consequences in terms of reduced engagement, satisfaction, and
deskilling [8]. Furthermore, humans are powerful synthesizers and can leverage extensive bodies of knowledge
and prior experience to inform their decisions [37]. Human-in-the-loop approaches have shown significant
promise in many applications of machine learning [39]. The human-in-the-loop concept is particularly suited to
the interaction design context, given that performance and design objectives can be very difficult to articulate
a priori. Designers working in-the-loop can also potentially improve the efficiency of the design optimization
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2 • Mo et al.

Table 1. Characteristics of Cooperative AI (adapted from [11]) and their alignment with the features of our Cooperative
interface.

Characteristic Description Cooperative MOBO Interface Features
Shared
Understanding

The ability to take into account
the consequences of actions, to
predict another’s behavior, and
the implications of another’s be-
liefs and preferences.

• Intuitive visualization of evaluated designs.
• Ability to share developed intuition and understand-
ing regarding portions of the design space to avoid.
• Consideration of previously evaluated designs when
proposing new designs.

Communica-
tion

The ability to explicitly and
credibly share information with
others relevant to understand-
ing behavior, intentions, and
preferences.

• Ability for the user to express regions of the design
space that MOBO should avoid.
• Input of a confidence value for the forbidden regions
and ranges.
• Visualization of design space coverage.

Commitment The ability to make credible
promises when needed for co-
operation.

• Forbidden regions prevent MOBO from pursuing
designs in that region to enable credible user steering
of MOBO.

process by leveraging their evolving intuition and prior experience to quickly ascertain whether a given design
configuration has promise, or should be avoided.

In this paper, we explore a cooperative approach that leverages the benefits and capabilities of each alternative
approach by allowing designers to work in concert with the systematic optimization process. This conceptual
framing of the approach is consistent with the established definition of ‘cooperative’ in the Oxford English
Dictionary: “that works together, or with another or others, towards the same end, purpose, or effect” [30].
Fostering cooperation, however, requires the forging of trust and shared understanding, established through
some form of dialogue. Dafoe et al. [11] outline three key characteristics of Cooperative AI: shared understanding,
communication, and commitment. The challenge then for cooperative design optimization, and the focus of this
paper, is how to construct an effective interface between the designer and optimization process that embodies
these characteristics.

An effective interface for cooperative design optimization should allow for the underlying optimization
process to be changed at will. In practice, however, different optimization methods exhibit different qualities and
opportunities for interactivity. Therefore, the specific choice of optimization process underlying the cooperative
approach is a secondary but nevertheless important consideration. Multi-objective Bayesian optimization (MOBO)
has emerged as an effective method for systematically examining an unfamiliar design problem in order to
efficiently obtain Pareto optimal configurations [2]. We employ MOBO in this study as the systematic design
technique given its efficiency and suitability for HCI design problems where measures of user outcomes are
potentially noisy and uncertain. There has also been limited work examining how a designer can work in unison
with MOBO in order to improve outcomes [8].

To produce an interface allowing designers to work in concert with MOBO, we aimed to support the three key
characteristics of good cooperation espoused by Dafoe et al. [11]. Table 1 lists the implemented features (detailed
later in Section 3) of our cooperative MOBO approach that align with these characteristics. Most importantly, we
allow the designer to express their emerging understanding of the design space to the MOBO process as well as
promote a shared understanding through enhanced visualization of state and history. To effectively incorporate
the designer’s developing intuition of the design space, we also introduce a distinction between a complete
evaluation of a particular design and evaluations that a designer might choose to abandon early due to parameter
choices quickly assessed to be unsuitable. Throughout this paper, we refer to a heuristic evaluation [14, p. 324] as
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Cooperative Multi-Objective Bayesian Design Optimization • 3

a trial evaluation where the designer can obtain a quick but less rigorous appreciation of the quality of the design,
and a formal evaluation as a full evaluation where a design is thoroughly assessed through multiple different
conditions to obtain metrics of performance. To give a concrete example of this distinction, consider a designer
who selects some parameters for an interaction technique and then performs a short self-experiment to test the
efficiency and accuracy of the design. This heuristic evaluation can quickly inform the designer of whether that
particular design has promise or should be discarded. By contrast, a formal evaluation in this example might
involve the designer running a controlled user study with a sample of users to more precisely assess the quality
of the design.

We investigate the potential of our cooperative MOBO approach in two user studies. Study 1 is designed to
examine the relative merits of the cooperative approach compared with an entirely designer-led process or an
entirely optimizer-led process. We therefore compare three operating conditions: Designer, where the design
process is entirely controlled by the designer; Optimizer, where the design process is entirely controlled by
MOBO; and Cooperative where the designer can exercise high-level command over the MOBO procedure. This
investigation is non-trivial given potential nuisance factors associated with learning that prevent a protocol in
which participants complete the same design task in each condition. Instead, we employ three distinct design
tasks but simulated them such that we can control for difficulty and complexity. This enables a within-subjects
design protocol that allows participants to offer rich comparative feedback on the experience of designing in
each condition.

Study 2 is an expert evaluation of the Cooperative approach as applied to designers’ own real-world design
problems. This study serves to capture expert opinion on the advantages and disadvantages of the cooperative
MOBO procedure when used in practice. To facilitate this investigation, we implemented the Cooperative
procedure as a web application and provide stub code and documentation to facilitate integration. Study 2,
therefore, captures feedback both on the suitability of the Cooperative approach as well as on the ease with
which our design tool can be integrated and used.

In summary, this paper makes three main contributions:

(1) It introduces a Cooperative approach that enables greater designer control over the MOBO procedure as
applied to interaction design problems.

(2) It presents an empirical evaluation of the Cooperative approach in direct comparison with the two
opposing ends of the spectrum: the Designer and Optimizer approaches.

(3) It contributes an implementation of the Cooperative approach as a web-based design tool, including
integration stub code, to facilitate rapid adoption by the HCI community.

2 RELATED WORK
Interaction with human-in-the-loop optimization has recently gained the attention of the HCI community
[8, 19, 20, 24, 29, 36]. Bayesian optimization has emerged as a promising technique for supporting this paradigm
thanks to its suitability for interactive settings. In comparison to other optimization methods like reinforcement
learning or genetic algorithms, Bayesian optimization is sample-efficient. This efficiency means that less input is
required from users, which is critical for applications involving experts. It also offers a principled way to handle
variance and noise inherent in human input. Consequently, the method has been investigated across a variety of
applications, including: personalizing user interfaces [21], optimizing interaction techniques [8], tuning visual
designs [6, 24], making design recommendations [17], and adapting feedback to users [19], among others (see
Dudley and Kristensson [16]).

However, the question remains how to offer effective controls and feedback during optimization. A recent study
by Chan et al. [8] investigated designers led by a Bayesian optimizer to optimize an interaction technique. Chan
et al. found that optimizer-led designers explore larger areas of design spaces, and were better able to overcome
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design fixation; however their reported levels of agency dropped dramatically. They felt that the optimizer was
‘holding their hand’ and diminishing their ownership of the final outcome. Chan et al.’s work highlights the need
for interfaces and interactions that improve the experience of a designer working in the loop with an optimizer
by addressing aspects of controllability, transparency, and explainability. This is critical for improving the efficacy
and acceptability of this method among practitioners.

In this brief review, we focus on emerging research on interaction techniques and tools for steering optimization
processes and Bayesian optimizers specifically. For a review of Bayesian optimization from a machine learning
perspective, we point the reader to Shahriari et al. [34].

2.1 Conventional Human-in-the-Loop Optimization
Bayesian optimization is a machine learning method for optimization of non-transparent systems. This means
that it is suitable for optimization tasks where no efficient mathematical representation of an objective function
exists. All optimization methods for non-transparent systems operate by querying samples from the objective
function and deciding where to query next. Thanks to the use of a surrogate model, Bayesian approaches are well
suited to applications where the objective function is expensive or difficult to evaluate [34]. The surrogate model,
often a Gaussian process model, is updated based on samples and used to select the next query point optimally.
An acquisition function is a principled way to use a surrogate model to decide where to explore (look at regions of
high uncertainty in the design space) and when to exploit (search in the local vicinity of a promising candidate).
However, updating the surrogate model is expensive in itself. With an increasing number of design parameters,
objectives, or samples, the cost of an update can increase dramatically. At the moment, Bayesian optimization is
best suited for low-dimensional problems [5].

In human-in-the-loop optimization, the human ‘is’ the non-transparent system. The optimization process is
indirectly guided by human input through feedback and observed human behavior in response to a set of input
parameters. Feedback can be either explicit (asking the user for ratings) or implicit (via measurements taken
during the actual use of the design). In standard uses of Bayesian optimization in human-in-the-loop design, the
user has no control over which samples are queried. For example, Khajah et al. [21] used Bayesian optimization
to maximize gamers’ engagement by tuning game mechanics. Kadner et al. [19] customized font designs for
individuals to maximize reading speed. Dudley et al. [17] used task completion time measured in a crowdsourced
task as an objective to refine the design parameters of simple user interfaces.

2.2 Visualization of Multidimensional and Multi-Objective Design Spaces
Until recently, applications of Bayesian optimization in HCI were limited to the optimization of a single ob-
jective [8]. However, most HCI problems are characterized by a complex interplay among multiple and often
competing objectives (e.g., speed versus accuracy in text entry). As there is no longer one defined optimum for
multiple objectives, the concept of Pareto optimality is important. A design is considered to be Pareto optimal
if no individual objective can be enhanced by changing the design parameters without resulting in at least
one individual objective being worse off. To address this gap, researchers have turned towards multi-objective
approaches for Bayesian optimization. These methods can produce a Pareto frontier that shows the candidates
that strike unique and optimal trade-offs among the objectives. A Pareto frontier display is a visualization of the
Pareto set for a user. While this approach can produce informative outcomes to pick from, it does not provide a
method for steering the optimizer.

Within the visualization community, there has been significant work examining how to support users with
inspecting and developing an understanding of high-dimensional design spaces. Sedlmair et al. [32] consider
a related problem to ours and seek to provide a framework for the analysis of the parameter space around
data visualizations. Various visualization methods have also been proposed to help highlight the link between

ACM Trans. Interact. Intell. Syst.

 



Cooperative Multi-Objective Bayesian Design Optimization • 5

parameters and design objectives in higher dimensions. Spence et al. [35] describe the Influence Explorer, a visual
tool utilizing a Parallel Coordinates Plot (PCP) with additional visualization of the instantiated designs. This tool
was designed to facilitate the quick exploration of parameters and their influence on performance. Spence et al.
[35] also introduce the Prosecution Matrix which provides a relatively compact visualization of the influence
of pairs of parameters. Paraglide [4] is another GUI tool for examining parameter spaces of multi-dimensional
simulation models while Torsney-Weir et al. [38] presents a method for visualizing higher dimensional shapes by
capturing 2D slices. These various methods can potentially enhance user understanding of the design space but
do not in themselves facilitate direct interaction with the optimization process.

2.3 Preference Galleries
Brochu et al. [7] and Koyama et al. [23, 24] demonstrated how Bayesian optimization can be used in concert with
preference galleries. A preference gallery is a display of several design candidates, from which the user can choose
the most interesting one(s). The authors showed that visual designs can be tuned more effectively using this
approach. Brochu et al. [7] demonstrated a technique for allowing designers to quickly determine appropriate
values for smoke animation while Koyama et al. [23, 24] sought to streamline user editing of photographs to
achieve a desired visual appearance. The benefit of preference galleries is that it increases the user’s agency.
By expressing ‘this is interesting’, the user can steer the optimizer toward more relevant designs. However, all
options are still provided by the optimizer and the user has no possibility to express other than like/dislike.

2.4 Bayesian Optimization Libraries
The recognized value of Bayesian optimization as a general-purpose optimization tool has prompted the develop-
ment of a range of software facilitating its use. Single objective Bayesian optimization is now available within
established libraries such as scikit-optimize for Python and the Statistics and Machine Learning Toolbox for
MATLAB. Given the added complexity involved in multi-objective Bayesian optimization, current (at the time of
writing) packaged implementations vary in their level of maturity and capabilities. BoTorch [2] is a relatively
full-featured and actively developed library implementing a particular variant of multi-objective Bayesian opti-
mization [13]. Other packages supporting multi-objective Bayesian optimization include GPFlowOpt [22] and
MOBOpt [18]. These various projects chiefly target developers familiar with the techniques and correspondingly
offer good configurability. They offer limited or no interaction techniques for visualizing or controlling the
optimization process.

2.5 Design Tools using Optimizers
Outside of Bayesian optimization, human-in-the-loop optimization has been extensively applied to design tasks
in HCI. In MenuOptimizer [1], the designer is assisted during the task of combinatorial optimization of menus. In
DesignScape [29], layout suggestions are given for position, scale, and alignment of elements. Other design tools
that have a human-in-the-loop aspect include Sketchplore [36] where real-time design optimization is integrated
into a sketching tool; Forte [9], in which designers can directly iterate on fabrication shape design through
topology optimization; in Kapoor et al. [20], where the behavior of classification systems can be iteratively refined
by designers; and in Lomas et al. [26], where game elements are iteratively adjusted to increase user performance.
At the time of writing, we are not aware of a design tool specifically developed for applying Bayesian optimization.
We focus on addressing this gap by presenting and evaluating an interface enabling a cooperative design process
leveraging Bayesian optimization.
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2.6 Summary
To sum up, while previous methods have shown the potential of Bayesian optimization in assisting designers
with the task of exploring a design spaces, there is a need to develop principled approaches that allow experts
to: (i) better express their knowledge, (ii) understand the design space, and (iii) guide the optimizer. We seek to
address this observed gap by exploring a cooperative approach to design optimization that facilitates shared
understanding, communication and commitment as per the characteristics described in Table 1.

3 DESIGN OF THE COOPERATIVE MOBO INTERFACE
The review of prior work in the previous section highlights various deficiencies in the conventional application
of Bayesian optimization to user interface design. Most importantly, conventional approaches do not allow the
designer to fully leverage their domain expertise or prior experience, and may inhibit the designer from gaining
a comprehensive understanding of the design space. Therefore, our design of the Cooperative MOBO interface
has the following specifications:

(1) The interface should allow the designer to specify and evaluate any design instance within the design
space and facilitate inspection of how the different parameters impact the corresponding objectives
through interactive visualizations.

(2) The interface should allow the designer to choose between performing a heuristic and formal evaluation.
(3) The interface needs to support functions giving the designer the ability to guide the design search in a

mixed-initiative workflow using information from both heuristic and formal evaluations.
These three motivating points are intended to allow designers to actively engage in the design process and

express their intuition. The mixed-initiative workflow allows designers to both use their own judgment as well as
to receive guidance from MOBO as they search for Pareto optimal designs. The final design of the Cooperative
MOBO interface is illustrated in Figure 1. Below, we detail the various features of the Cooperative MOBO
interface and how they are integrated.

3.1 Expressing and Visualizing the Design Parameterization
First, the designer must input the design parameters and the corresponding design objectives to be optimized.
The design parameters should be continuous or have values that can be expressed in a continuous range with a
lower and upper bound. The design objectives should also be continuous and should be expressed in a way that
they are maximized in the design process. It is recommended that the number of design parameters be fewer
than 10 as per guidance in the Bayesian Optimization literature [27], and currently, the application is limited to
two competing objectives to facilitate clear visualization in the interface.

During the design process, the designer can adjust the sliders shown in region A of Figure 1 to set the desired
values for each of the design parameters. In the study described later in Section 5, any adjustment of these sliders
was immediately reflected in the interfaces shown in Figure 3. The designer can then decide to perform heuristic
or formal evaluations for the specified design. We support interactive visualizations to help the designer in the
design process. Region D of Figure 1 shows the parallel coordinates plot (PCP) used to concisely represent the
previously evaluated designs as well as the currently selected design. The previously evaluated designs are also
displayed on the objectives chart (region E). The PCP shows both the heuristic and formally evaluated designs,
with the heuristic designs represented by dotted lines and the formal designs represented by solid lines. In the
objectives chart, the heuristic designs are shown with non-filled dots whereas the formal designs are filled. When
the user hovers over a particular design in the PCP or the objectives plot, the application highlights that particular
design and the corresponding objective values in both the PCB and objectives chart with a yellow color, and
displays the numerical values. The user can also toggle the Plot Heuristics checkbox, to hide or show the heuristic
designs in the interface.
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Cooperative Multi-Objective Bayesian Design Optimization • 7

The visualizations also integrate interactive features with the design parameter sliders. When the sliders of
region A are moved, a red line on the PCP of region D updates to indicate the current design parameter slider
values. This visualization aids the designer in understanding where the currently selected design parameter
values sit with respect to previously evaluated points in the design space. The most recent design evaluated is
shown in yellow for formal evaluations and green for heuristic evaluations [28]. In addition, when the user clicks
on a particular design in the PCP or the objectives chart, it sets those values in the sliders. This can be helpful if
the user wishes to return to a previously evaluated design and examine variations around that point.

3.2 Using MOBO to Obtain a New Design
To enable the mixed-initiative aspect of the application, the interface features a New Design from MOBO button
as shown in region B of Figure 1. When this button is clicked, the application executes the algorithm detailed

A D E

B

C

F

Fig. 1. The Cooperative MOBO Interface. The top left (A) shows the sliders for adjusting the design parameters. Below these
sliders (B) are the buttons to perform a formal or heuristic evaluation as well as to obtain a design recommendation from
MOBO. Towards the bottom left (C) are the metrics showing the design space coverage and use of MOBO. The visualizations
at the top represent the PCP (D) and corresponding objectives chart (E) of the designs previously evaluated. In the bottom
half (F), there is the interactive visualization for inputting the forbidden regions and ranges. Note that in this figure the red
line in the PCP that corresponds to the slider values is overlaid with the yellow line which represents the most recently
evaluated design.
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later in Section 4 and searches for a new promising design candidate to recommend to the user. After execution,
the design parameter sliders are updated to the recommended design candidate values. The user can then decide
to either formally or heuristically evaluate this recommended design.

3.3 Monitoring Progress and History
To aid the designer in understanding the design process history, we show two metrics in region C of the interface
to the designer: Design Space Coverage and Use of MOBO. Design Space Coverage is defined as follows. Suppose
that the design parameter space is of dimension 3 , which we divide into 23 hypercubes. This represents each
dimension being split into two halves, such that if 3 = 2, there would be four corners of the design space that
could potentially be ‘covered’. We chose to split each dimension into two since as 3 increases, using a larger split
number would result in the design coverage metric tending to zero. We count the number of these hypercubes
that contain a formally evaluated design, which is represented by : . The Design Space Coverage is then defined
as :

23
, which represents a proxy for the percentage of the design space that is formally evaluated. This metric is

included to encourage users to explore more of the design space so as to avoid design fixation.
The Use of MOBO Percentage is calculated as follows. Suppose that at the time of display, the Perform Formal

Evaluation button has been clicked on ) times. Note that we only consider the execution of formal evaluations
in this metric since formal evaluations are significantly more time-consuming than heuristic evaluations and
therefore, chiefly dictate the efficiency of the design process. Now suppose that the user has clicked the New
Design from MOBO button to aid in the design process C times immediately prior to clicking the Perform Formal
Evaluation button. Then the Use of MOBO Percentage is defined as C

)
, hence representing the proportion of

formal evaluations for which the user used MOBO to aid in the design process. This metric was included in
the interface to foster a cooperative mode of work. Visibility of the metric provides awareness of the relative
frequency of use of MOBO, and, it is hoped, may encourage a balance between leveraging suggested designs and
manually selecting designs.

3.4 Expressing Forbidden Regions and Ranges
We also introduce forbidden regions and ranges to provide the designer with the ability to guide the design search
using MOBO. Conceptually, these inputted regions and ranges are portions of the design space that the user does
not want MOBO to continue proposing design candidates from.

We implemented an interactive chart for inputting forbidden regions and ranges, as shown in region F of
Figure 1. To input a forbidden region, the user can click on Add New Forbidden Region which inputs a forbidden
region in the chart centered around the design parameter values currently set in the sliders. The upper and lower
boundaries for the forbidden region are initially set as ±5% of the parameter range for each parameter. The user
can change the upper and lower boundaries of the forbidden region by dragging the light blue circles shown in
Figure 1. The user can also change the confidence value of the forbidden region, with 1 representing that the user
has full confidence in excluding designs from that forbidden region and 0 representing no confidence. Selecting
Clear clears the selection of the forbidden region and selecting Delete deletes the selected forbidden region. A
forbidden region can be selected by directly clicking on it in the interactive chart.

We also support the input of forbidden ranges. Suppose a designer has figured out that for one particular
parameter, designs with that parameter having a value in a particular range should not be further explored.
Then, inputting a forbidden range for that parameter with that particular range prevents MOBO from further
proposing designs with a parameter value in that range. In the interactive chart, an adjustable forbidden range
can be inputted for a parameter by clicking the ‘+’ button in the appropriate axis. The interactive features for the
forbidden range are the same as those for the forbidden regions.
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3.5 Integrating with the Web Interface
We believe that the interface presented in this section has good generalizability and can be used widely in multi-
objective design problems encountered in HCI. To accommodate such use, the interface itself is implemented as a
web application with computations offloaded to the server. This allows, as described later in Section 6, for the
rapid integration of the cooperative optimization process within designers’ existing prototype applications. As
an initial demonstration of the swift integration concept, we make available1 a Unity integration package that
can be imported from GitHub via the native Unity package manager. This package includes detailed step-by-step
instructions, sample code, and a toy design problem (implemented as a Prefab game object), illustrating the
integration procedure. This allows the developer to manage the optimization process using the web interface:
new designs are sent for evaluation to the Unity application and evaluation results are automatically returned
and displayed in the interface. A minimal integration with a custom design task in Unity involves only two steps:

(1) Listening to one action that is called when new design parameters are received from the web interface:
CODWebInterface.OnDesignParametersUpdated(List<float> parameterValues)

(2) Calling one method when the design evaluation (either formal or heuristic) is complete:
CODWebInterface.EvaluationComplete(List<float> objectiveValues, bool formal = true)

4 TECHNICAL APPROACH
In this section, we present the technical details underlying the integration of the forbidden regions and ranges
when acquiring a new design proposal from MOBO. Our goal is to allow designers to steer the MOBO acquisition
process in order to explore new regions or avoid undesirable regions of the design space. As a concrete example,
consider an interaction design task for a selection technique where different target distances and orientations are
evaluated to obtain the average speed and accuracy for a given parameter configuration. These parameter and
performance values can then be fed into the MOBO procedure. However, when performing this task we may
intuitively know within the first few trials whether a design is very good or very bad. In such circumstances, it
may be useful if the evaluation can be halted early. The problem is that the average speed and accuracy calculated
for those few initial trials cannot be fed into MOBO because it will likely yield a biased result since it reflects
only a subset of the operational task space. Hence, we need to find a method that can allow designers to early
stop in what we call a heuristic trial but at the same time incorporate that heuristic trial into MOBO so it can use
this additional information.

A solution to this problem is to introduce what we call forbidden regions and ranges. The idea is that after
a heuristic trial, if the designer wants to early stop because the design is bad, then the designer can input a
forbidden region around this design point to prevent MOBO from further proposing a new design similar to
this bad design. In addition to this, we added a feature to input a forbidden range in which we can exclude a
whole interval of a particular design parameter (for example, a design parameter being smaller than a threshold
is expected to always yield a bad design). We also let the designer tune the confidence of the forbidden region or
range which allows the designer to choose how strongly a particular region or range is to be avoided by MOBO.

Although our original motivation was to include early stopping in evaluations, this actually translates to a
wider application in cases where we have heuristic and formal evaluations. The approach also allows the designer
to nudge the optimization process towards wider design exploration by, for example, inputting a forbidden region
in an area of the design space that is being overly exploited.

1https://github.com/Jojadud/MOBODesignerPackage
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4.1 Formalization of the Approach
Suppose we have a design space of dimension 3 , X ∈ R3 , and an objective space of dimension : , Y ∈ R: . In
practice, X = [0, 1]3 and Y = [−1, 1]: after normalization. We also denote here, +" = 2: as the maximum
hypervolume in this problem statement.

In ourmulti-objective optimization scenario, we have a function representing a non-transparent system 5 : X →
Y. Suppose we have collected dataD. In MOBO, we have an acquisition function, expected improvement in Pareto
hypervolume (��%+ ), from which we maximize to obtain the next point to sample: G∗ = argmaxG∈X ��%+ (G |D).

In our forbidden region framework, we essentially have a list of forbidden regions {R 9 } �9=1 that are all of the form
{[;1, D1], ..., [;3 , D3 ]}. In practice, let us say we have a heuristic point 0 that we want to wrap around a forbidden
region of width 2F . Then the corresponding forbidden region would be {[01 −F, 01 +F], ..., [03 −F, 03 +F]},
where we have set by defaultF = 0.05.

Essentially, we want to penalize everything inside the forbidden region with a penalty function, that is, we
introduce a penalty term of U

3 (G,R 9 )2 , where 3 (G,R 9 ) is the closest distance between a point G and the forbidden
region. Here, U is a penalty scaling factor which we set to U = 0.01 by default based on observed behavior when
applied on synthetic functions. Hence, the acquisition function we have at the moment is:

��& (G |D) = ��%+ (G |D) −
�∑
9=1

U

3 (G,R 9 )2
(1)

However, with this form of the penalty function we run into the problem of when G ∈ ' 9 yielding a 3 (G,R 9 ) = 0,
and a numerical explosion in the penalty. To account for this, we set a bound on the penalty function by +" , the
theoretical maximum hypervolume, as this is the upper bound, albeit loose, of ��%+ (G |D). Hence, our modified
acquisition function becomes:

��& (G |D) = ��%+ (G |D) −
�∑
9=1

min(+" ,
U

3 (G,R 9 )2
) (2)

However, this gives rise to another problem—it is entirely possible that +" is not the same order of magnitude
as ��%+ (G |D), yielding very large penalties and rendering the entire acquisition function dominated by penalties
and not by the expected increase in Pareto hypervolume. To counter this, we attach another normalization
constant to penalty functions to make them the same order of magnitude as ��%+ (G |D). Hence, the modified
acquisition function is:

��& (G |D) = ��%+ (G |D) − /

�∑
9=1

min(+" ,
U

3 (G,R 9 )2
) (3)

where we set / =
maxG ∈X ��%+ (G |D)

+"
to enforce the two terms to have the same order of magnitude. To illustrate

this, consider Figure 2, which shows the ��%+ acquisition function, the acquisition function with penalizing
factors without normalization, and finally the acquisition function with penalizing factors with normalization.
Note that without normalization, the forbidden regions are clearly seen but completely overwhelm the ��%+
values. However, with normalization the ��%+ values can have a significant effect.

To introduce the confidence of including each forbidden region, we introduce a factor called the confidence
factor V 9 ∈ [0, 1] to each confidence region. If V 9 = 0, it means we are completely uncertain of including the
forbidden region R 9 and hence it has no effect, but if V 9 = 1 then we are fully confident in including the forbidden
region and hence it has the intended penalizing effect. This factor is set by the designer for each forbidden region.
Hence, the final acquisition function we use in our studies is:
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Fig. 2. (a) shows the base ��%+ acquisition function; (b) shows the acquisition function with penalty functions without
normalization, where only the penalty region effects can be seen; (c) shows that after normalization the effect of the base
acquisition function ��%+ can be seen, in addition to the penalty regions.

��& (G |D) = ��%+ (G |D) − /

�∑
9=1

V 9 min(+" ,
U

3 (G,R 9 )2
) (4)

Given all the forbidden regions and the confidence values corresponding to each region, we use the following
procedure to find the next point of acquisition:

(1) Use a gradient ascent algorithm (e.g., L-BFGS-B) with repeated trials to find maxG∈X ��%+ (G |D), and
hence evaluate / =

maxG ∈X ��%+ (G |D)
+"

.
(2) Use gradient ascent again with multiple repeated trials to maximize ��& (G |D) to find G∗ which is the

next design proposal.

4.2 Including Forbidden Ranges
As previously mentioned, sometimes we want to exclude a whole region of the design space based on one
parameter. For example, we might want to exclude all designs with a parameter having a value in a particular
range. Suppose we want to exclude all designs within the design dimension 8 with values between [;8 , D8 ]. Then,
the corresponding forbidden region would be: {[0, 1], ..., [;8 , D8 ], ..., [0, 1]}. Afterwards, we proceed the same way
as detailed in the previous subsection by treating the forbidden range as a special form of a forbidden region.

5 STUDY 1: DESIGN OPTIMIZATION TASK
The purpose of Study 1 is to examine the advantages and disadvantages of the Cooperative method over the
conventional alternative approaches of entirely relying on the designer (Designer) or entirely relying on the
optimizer (Optimizer). The Designer method is where the designer has the capacity to perform both formal
and heuristic evaluations but only has access to the sliders to change the design parameters and the PCP and
objectives chart. The Optimizer method is where the designer can only use the New Design from MOBO button
to obtain a new design but has no ability to change the design parameter sliders and can only perform formal
evaluations. This is to reflect the scenario where the designer would only use MOBO to obtain new designs for
formal evaluation as in the original MOBO algorithm—it does not support the inclusion of information from the
heuristic evaluations. This is also consistent with a recent study by Chan et al. [8] that compared the Designer
and Optimizer methods.

There are three hypotheses that we aim to examine through this experiment.
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(a) App 1: Social microblogging. (b) App 2: Q&A message board. (c) App 3: Restaurant map.

Fig. 3. The three design applications presented to participants in Study 1. Any adjustment of the parameter sliders (shown in
Figure 1 (A)) is directly reflected by visual changes in the interface. For example, in App 1, increasing the ‘Ads’ displays more
of the ‘Buy!’ icons between each post. Increasing the ‘Notification’ rate displays more ‘bell’ icons at the top of the interface.
Increasing ‘Personalization’ adds more ‘like’ icons to each post. Increasing ‘Moderation’ increases the size of the ‘magnifying
glass’ icon. Finally, increasing the ‘Refresh’ rate causes the spinning arrow in the top right of the interface to turn faster. The
appearance of all three application interfaces at both extremes of the parameter ranges is shown in Figure 7 in Appendix A.

• H1 : The Cooperative method leads to similar performance, as indicated by the relative hypervolume of
the derived Pareto-optimal designs, to the performance of the Optimizer method.

• H2 : The Cooperative method requires fewer formal design evaluations than the Optimizer method to
complete the design optimization task.

• H3 : The Cooperative method results in higher agency and engagement for designers compared to the
Optimizer method.

When designing this study, we considered both between-subjects and within-subjects study designs. We
ultimately pursued a within-subjects design for two key reasons. First, the between-subjects study design with
three conditions would have required a large number of participants (likely 48 or more participants). Second, the
between-subjects study design would not have allowed participants to reflect on and comment on the relative
advantages and disadvantages of the different conditions. However, to compare each method in a within-subjects
design we require a distinct design problem for each condition as a control for learning effects. To tackle this issue,
we designed three design problems of matched difficulty. We developed three design problems inspired by three
typical web applications (the applications in Figure 3), thereby preserving a consistent theme. To ensure these
design problems were comparable in terms of difficulty, we employed multi-objective test functions of a similar
form (detailed in the next section) to relate the design parameters to their hypothetical performance. In other
words, these test functions represent a synthetic but controllable replacement for actual end-user evaluations of
these various applications.

5.1 Test Functions for Study 1
In Study 1, we employed various multi-objective test functions that were all five dimensional, with two objectives.
Although the design parameters and outputted objective values shown in the interface might be of varying ranges,
they are first respectively normalized to be in the range [0, 1] and [-1, 1]. Hence, the test functions implemented
have a domain of [0, 1]5 and a range of [−1, 1]2. The specification that we sought to meet for the test functions
was that the difficulty in finding the optimal trade-off designs should be approximately consistent. As a result,
we designed the functions to have similar forms and to have the same final Pareto hypervolume.
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For a realistic design scenario, we expect that the objective function is roughly convex and that multiple modes
of optimal designs are quite rare. This can be justified with the observed objective function behaviors for the
interactive design tasks in prior work [17]. As a result, we designed each of the objectives 9 = 1, 2 to be quadratic
in form with the optimum value 2 9 , position of the optimum to be a9 = [0 91, 0 92, 0 93, 0 94, 0 95] and the scaling
factors to be b9 = [1 91, 1 92, 1 93, 1 94, 1 95]:

[51 (x), 52 (x)] = [21 −
5∑

8=1

118 (G8 − 018 )2, 22 −
5∑

8=1

128 (G8 − 028 )2]

Note that if we perform the permutation of (1, 2, 3, 4, 5) → (f (1), f (2), f (3), f (4), f (5)), the form of 5 is
preserved but the parameter axes are swapped. In addition, note that for the domain of x ∈ [0, 1]5, if we apply
the transformation of (018 , 028 ) → (1 − 018 , 1 − 028 ), then we also preserve the final hypervolume but with now
the optimum at x9 = [1 − 0 91, 1 − 0 92, 1 − 0 93, 1 − 0 94, 1 − 0 95] for each objective function. Swapping the 9 ’s (i.e.
[1, 2] → [2, 1]) also preserves the form of the overall objective function. We call these functions isomorphic
to each other. To exploit these properties to ensure that the three methods have applications of relatively the
same difficulty to find the optimal designs, each of the test functions has the dimensions being permutations
or mirror reflections of each other and hence they are all isomorphic (i.e. same maximum hypervolume and
optimum designs up to reflection and permutation).

For the study, we have three applications with isomorphic objective synthetic functions and a separate tutorial
task with two design parameters and two objectives. Table 2 shows the parameters and objectives for each test
function and what they represent in the three applications and the tutorial task, with the corresponding ranges.
Figure 3 shows the visual interfaces for the three design applications. Figure 7 in Appendix A illustrates these
same three design applications at the extreme parameter values. Note that adjusting each of the design parameters
in the sliders triggers a change in the visual interface of the application. For example, increasing the size of the
icon in the restaurant map application will result in the icon in the visualization increasing in size. The visual
feedback allows the designers to develop an intuitive understanding of the effect of the design change. Table 3
lists the parameters for the application and tutorial objective functions after normalization. These parameters
were selected so that the Pareto optimal values correspond to some sort of intuitive behavior (i.e. increasing the
density of ads increases daily revenue).

After querying the functions we add noise to generate the synthetic performance results. The amount of noise
added differs for formal and heuristic evaluations. For a formal evaluation, we add a uniformly distributed noise
from*=8 5 (−0.05, 0.05), and for a heuristic evaluation, the noise is drawn from*=8 5 (−0.25, 0.25), independently
for each of the two objectives. For a formal evaluation, to simulate the longer time it takes to obtain the result, it
takes 20 seconds to obtain the result, but for a heuristic evaluation, it only takes 3 seconds. These times were
selected to introduce a trade-off between the accuracy of the result and the time it takes to obtain it via the
heuristic and formal evaluations. The unnormalized objective values are then displayed in the interface.

5.2 Participants and Setup
We recruited = = 18 participants (11 male, 7 female, aged between 20 and 36 and with an average age of 26.1)
from our institution through emailing lists for this first study. The study was approved by the Research Ethics
Committee in the Department of Engineering at the University of Cambridge. The participants were mainly from
engineering backgrounds, with 12 of them with engineering education (e.g., civil engineering, computer science,
aerospace engineering) and other participants varying in fields from theoretical linguistics and biochemistry. 8
participants also reported having had experience with computational design. This demographic aligns well with
the target users of the Cooperative MOBO interface as the features are intended for individuals who have some
experience with design, and may therefore feel comfortable incorporating personal intuition. For the study, the
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Table 2. Design parameters, objectives and ranges for each of the applications and Tutorial (T ).

App G1 G2 G3 G4 G5 51 52

1 Density of
ads - [0, 1]

Notifi-
cation
frequency
- [0, 2] per
hour

Personali-
zation rate
of content -
[0, 1]

Moderation
rate of
content - [0,
1]

Refresh
time of
content - [0,
20] minutes

Daily rev-
enue - [0,
20] thou-
sands USD

User rating -
[0, 5]

2 # Question
categories -
[5, 50]

Refresh
time of
content - [0,
1000]

Length of
question
preview
- [0, 500]
characters

Max num-
ber of
question
tags - [1,
10]

Threshold
activity
rating for
user to
answer
questions -
[0, 5]

Answering
rate of
questions
- [0, 2] per
minute

% Questions
Answered -
[0, 100]

3 Location
icon trans-
parency -
[0.5, 1]

Cursor
distance for
restaurant
to show -
[5, 50]

Location
icon size -
[1, 10]

Description
box size -
[10, 50]

Restaurant
name text
size - [10,
30]

Average
speed to
find restau-
rants -
[0, 2] per
minute

Accuracy in
finding all
restaurants -
[0, 100]

T Force to
register
contact on
screen - [10,
100] N

Area to
register
contact on
screen -
[0.5, 3.0]
2<2

- - - Average
target hit
speed -
[0, 3] per
second

Accuracy
of hitting
targets - [0,
100] %

Table 3. Parameters a1, a2, b1, b2, 21, 22 for the synthetic functions used in the applications and Tutorial (T ).

App a1 a2 b1 b2 21 22

1 [0.9,0.3,0.8,0.25,0.25] [0.3,0.35,1.1,0.75,0.3] [0.9,0.4,1.3,0.7,0.4] [1.0,0.6,1.2,0.5,0.4] 0.7 0.8
2 [-0.1,0.25,0.7,0.7,0.65] [0.2,0.75,0.75,0.1,0.7] [1.2,0.5,0.4,1.0,0.6] [1.3,0.7,0.4,0.9,0.4] 0.8 0.7
3 [1.1,0.75,0.35,0.3,0.3] [0.8,0.25,0.3,0.9,0.25] [1.2,0.5,0.6,1.0,0.4] [1.3,0.7,0.4,0.9,0.4] 0.7 0.8
T [0.3,0.35] [0.7,0.65] [1.0,0.8] [1.2,0.9] 0.7 0.8

participant had access to a monitor and a mouse. For each participant, the whole study lasted approximately 2
hours. All participants received a £20 voucher as a token of appreciation for their time.

5.3 Experimental Method
As described previously, we employ a within-subjects study design. The interface conditions and design applica-
tions were counterbalanced as described in Appendix B.

5.4 Procedure
The steps of the study procedure were as follows:

(1) Before introducing the three applications, we gave the participant a detailed tutorial on design optimization
with multiple objectives and the idea of Pareto optimal designs. This was to familiarize the participants
with the context of multi-objective interaction design.
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(c) App 3.

Fig. 4. Combined Pareto front for the three applications. Green: Designer, Red: Cooperative, Blue: Optimizer. The marker
fill color indicates the Pareto front for a single individual. In simple terms, a Pareto front producing a curve closer to the
top-right of the plot can be interpreted as capturing a better set of good designs. Although there is substantial variation
between users, we can observe that the Pareto fronts obtained in the Optimizer condition (blue) are generally grouped
towards the top right while the Pareto fronts obtained in the Designer condition (green) are generally further from the top
right (most prominent in App 1 and 2). The Pareto fronts obtained in the Cooperative condition (red) generally sit between
the other two conditions.

(2) We then gave the participant a video tutorial on the interactive features that they will interact with
in the web application. This video tutorial showed only the interactive features that the participant
would immediately interact with in the task—for example, if the first application was using the Designer
condition, the participant would only be introduced to the PCP, the objectives chart, and the sliders.
However, if the first task was using the Cooperative condition, the forbidden regions and ranges, and
the MOBO button would also be introduced.

(3) For each of the three applications, we gave the participant 5 minutes to interact with the tutorial task with
two design parameters and two objectives. If the participant did not interact with a particular interactive
feature (such as inputting forbidden regions or ranges), we explicitly showed the participant what the
feature did. The objective of this step was to ensure participants were familiar with all the features of the
interface.

(4) The main application design task was then presented to the participant with the instruction to find three
designs for each application that optimally trade-off the two objectives by maximizing the two objectives.
We gave the participant the context of designing a web interface for a technology company. The design
parameters and objectives were described in detail with their corresponding ranges, and the interactive
actions that the participant could use in this task were listed (e.g., manually tuning with sliders, using
the MOBO button). The two different types of evaluations were also described with the trade-offs in
accuracy and time to execute outlined. Finally, participants were informed of the following constraints
for completing the task—the participant could decide to finish the task after a minimum of 15 minutes,
but could continue to work on the task up to a maximum of 20 minutes.

(5) After all three condition-application pairings were completed, we presented the participant with a final
questionnaire comparing the three interfaces. The main goal of the questionnaire was to understand the
user’s engagement and sense of agency in the optimization process and the perceived confidence in the
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results. As there was no existing questionnaire that precisely served our needs, we adapted questions
from the Creativity Support Index [10] and System Usability Scale [3] questionnaires.

5.5 Results
5.5.1 Pareto Set Discovery. Figure 4 plots the various Pareto fronts obtained in the different conditions for the
three applications. Note that there are six fronts for each condition in each plot as this represents the number
of participants who completed that particular condition-application pairing. Visual inspection suggests that
generally the Optimizer condition delivers Pareto fronts with high hypervolume and good consistency between
participants. The Designer condition appears to show visually higher levels of inter-participant variability. The
Cooperative condition produces Pareto fronts that appear to sit, very approximately, between the other two
conditions.

We make this comparison more concrete by computing several key metrics indicative of the efficiency and
quality of the combined Pareto sets in each condition. Boxplots of these various metrics are shown in Figure 5. In
subsequent analysis, we test for a significant condition effect using Friedman’s test since the metric distributions
are skewed. We perform multiple comparisons using Tukey’s honestly significant difference procedure. As
a check for nuisance effects associated with application or condition-application interaction, we also run a
repeated measures ANOVA on the metrics shown in Figure 5. This reveals no significant application effect or
condition-application interaction. This provides confidence that our efforts to produce applications of comparable
difficulty and our counterbalanced experiment design were effective in limiting these nuisance effects.

Figure 5a shows a boxplot of the total number of formal evaluations performed by each participant in each
condition. The mean counts are 15.17, 18.33, and 23.11 for Cooperative, Designer and Optimizer respectively.
We find a significant effect for condition (j2 (2) = 9.942, ? = 0.007), with the Cooperative condition exhibiting
significantly fewer formal evaluations than Optimizer (p = 0.0047). There were no significant differences for
the other pairwise comparisons. This result indicates that participants performed significantly fewer formal
evaluations in the Cooperative condition than in the Optimizer condition. This is as expected since participants
could only perform formal evaluations in the Optimizer condition whereas they could choose between a heuristic
or formal evaluation in the Cooperative condition.

Figure 5b shows a boxplot of the total number of Pareto optimal designs obtained. The mean counts are 4.22,
5.17, and 6.44 for Cooperative, Designer and Optimizer respectively. We find a significant effect for condition
(j2 (2) = 9.164, ? = 0.010) with the Cooperative condition yielding significantly fewer designs than Optimizer
(p = 0.0071). The other pairwise comparisons showed no significant differences. This finding indicates that the
Cooperative condition produces significantly fewer Pareto optimal designs than the Optimizer condition.
Although the difference is not significant, the Cooperative condition also delivers fewer designs than the
Designer condition. This is likely due to the observed behavior of participants in the Designer condition of
fixating on a particular design and evaluating minor variations around this point in the parameter space. This
hypothesis also aligns with the observed significant differences in mean travel distance results reported later in
this section.

We compute the relative hypervolume obtained in each condition for each participant by normalizing it
with respect to the maximum hypervolume obtained in the corresponding application. Boxplots of the relative
hypervolume obtained by participants in each condition are shown in Figure 5c. The mean relative hypervolume
obtained is 0.85, 0.80, and 0.95 for Cooperative, Designer and Optimizer respectively. We find a significant
effect for condition (j2 (2) = 18.778, ? < 0.001) with Designer yielding significantly smaller hypervolume than
Optimizer (p < 0.001). There are no significant differences for the other pairwise comparisons. This result matches
with the visual observations that can be made in Figure 4 where the hypervolumes enclosed by the Designer
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(f) Mean travel distance.

Fig. 5. Key metrics indicative of the efficiency and quality of the Pareto set obtained in each condition. The Cooperative
condition resulted in significantly fewer formal evaluations than the Optimizer condition (Figure 5a). This then produced
significantly fewer designs in the Pareto set for Cooperative compared to Optimizer (Figure 5b) but with no significant
difference between these two conditions in terms of the relative hypervolume (Figure 5c). There was no significant condition
effect for design space coverage but Cooperative did deliver the highest mean design space coverage at 24.0% (Figure 5d).
These results suggest that designers in the Cooperative condition were more efficient in their design space exploration than
in the Optimizer condition and yielded comparable final outcomes in terms of the performance objectives of the designs in
the Pareto set. Contrasting against the Designer condition, both the Optimizer and Cooperative conditions resulted in
greater variation between successive design instances evaluated (Figures 5e and 5f).

Pareto fronts appear generally smaller than the Optimizer Pareto fronts, and with the Cooperative Pareto
fronts sitting somewhere in between.

Another informative metric is the design space coverage as introduced in Section 3.3. The mean design space
coverage is 24.0%, 21.0%, and 21.2% for Cooperative, Designer, and Optimizer respectively. This result suggests
slightly greater design space coverage in the Cooperative condition but we find no significant effect for the
condition.

Finally, there are two related metrics that provide a proxy measure of the degree of broad exploration of the
design space versus local ‘fixation’. These are the total design space travel distance and the mean design space
travel distance. The total design space travel distance is the sum of the Euclidean distance between subsequent
formally evaluated points in the design space. The mean design space travel distance is the total divided by
the total number of evaluations performed. Boxplots of these two metrics for the participant group in each
condition are shown in Figures 5e and Figures 5f. The total design space travel distance reveals a significant
effect for condition (j2 (2) = 8.111, ? = 0.017). The mean total distances are 8.59, 6.47, and 10.44 for Cooperative,
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Table 4. Median [min, max] responses on a seven-point Likert scale from 1—strongly disagree to 7—strongly agree for the
seven statements presented in the post-condition questionnaire of Study 1.

Statement Designer Cooperative Optimizer

1 I was able to grasp the impact of each design pa-
rameter on the output of the design.

5.5 [2, 7] 5.0 [1, 7] 4.0 [1, 7]

2 The system allowed me to explore different design
parameters to see what its impact on the design
output is.

6.0 [4, 7] 6.0 [1, 7] 3.0 [1, 6]

3 I felt that I had control over searching different
areas of the design space.

6.0 [3, 7] 5.5 [3, 7] 1.5 [1, 6]

4 I have an intuitive sense of the design space from
using this system.

5.5 [2, 7] 5.0 [3, 7] 4.0 [1, 7]

5 I felt that the optimal designs I have obtainedmake
sense.

6.0 [3, 7] 6.0 [4, 7] 5.0 [1, 7]

6 I felt that I was formally evaluating designs that
aligned with my intuition of the design.

5.0 [2, 7] 5.5 [3, 7] 3.5 [1, 7]

7 I am confident that I found the optimal designs in
the design space.

5.0 [3, 7] 5.0 [2, 7] 5.0 [1, 7]

Designer and Optimizer respectively. In post hoc pairwise comparisons, the Optimizer condition is found to be
significantly higher than the Designer condition (p = 0.0128). When normalized by the number of evaluations
performed, the mean travel distances are 0.536, 0.352, and 0.452 for Cooperative, Designer, and Optimizer
respectively. There is a significant effect for condition (j2 (2) = 11.444, ? = 0.003) with the mean distance traveled
in the Cooperative condition significantly higher than the Designer condition. This result suggests that the
Cooperative condition leads to more variation in design parameters between subsequent evaluations than in
the Designer condition.

5.5.2 Subjective Experience and Preference. At the conclusion of the design exercise in each condition, participants
responded to the seven statements listed in Table 4. The median responses (also presented in Table 4) highlight
a comparable experience and intuition for participants in the Designer and Cooperative conditions. The
Optimizer condition, however, received distinctly lower scores for aspects of the experience related to agency
and understanding of the design space. We find significant differences for statements 1 to 6 (respectively: j2 (2) =
9.750, ? = 0.008, j2 (2) = 17.207, ? < 0.001, j2 (2) = 24.133, ? < 0.001, j2 (2) = 10.226, ? = 0.006, j2 (2) = 6.145, ? =
0.046 j2 (2) = 12.033, ? = 0.002) with the Cooperative condition yielding significantly higher scores than the
Optimizer condition for statements 2 to 5. There are no significant differences between the Cooperative and
Designer conditions.

Finally, participants were asked to express their overall preference among the three interfaces used. The
majority of participants (12/18) indicated Cooperative as their top preference, followed by Designer (4/18),
and the least favored interface was Optimizer (2/18). Participants also responded to the statement, “I would
like to use the <method> again.” on a seven-point Likert scale from 1—strongly disagree to 7—strongly agree.
The median scores were 6.0, 5.0, and 3.0 for Cooperative, Designer and Optimizer respectively. The median
score for the six participants who did not select Cooperative as their top preference was 5.0, indicating that the
experience of the Cooperative condition for this subset of participants was still generally positive.
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5.5.3 Summary. We briefly summarize the interpretation of these findings. Responding to H1, Cooperative
produces comparable (no statistical difference) relative hypervolume to Optimizer. Furthermore, responding
to H2, Cooperative delivers this hypervolume with fewer (significant) formal evaluations, suggesting greater
efficiency over Optimizer. A downside is that there are fewer (significant) designs in the Pareto set for Coop-
erative than Optimizer. The fact that Cooperative traveled to fewer design instances than Optimizer but
still yielded only marginally lower relative hypervolume suggests that the reduced resolution of the Pareto set
may be tolerable if the captured designs are representative of the true Pareto optimal designs. The design space
coverage is comparable (no statistical difference) for all methods. The mean travel distance (an indicator of the
degree of local exploration versus broader exploration) is lowest for Designer and highest for Cooperative, with
this difference being significant. This suggests Cooperative may help to offset the fixations issues encountered
with Designer. The subjective experience of using Optimizer was much worse than Designer/Cooperative
(which are themselves about the same). This suggests Cooperative maintains the benefits of Optimizer in
terms of efficiency and hypervolume while avoiding many of the detriments of the exclusively systematic ap-
proach. Examining the subjective experience (H3), the results of the questionnaire suggests that Cooperative
promotes greater engagement in the task compared to Optimizer. Finally, 12 out of 18 participants indicated that
Cooperative was their most preferred interface.

6 STUDY 2: EXPERT EVALUATION
Study 1 demonstrated the benefits of the cooperative optimization approach on simulated design tasks, compared
to the designer-led and the optimizer-led approaches. We observed that the Cooperative condition produced
Pareto sets of comparable quality with the Optimizer condition but with fewer evaluations and without the
degraded user experience observed for the Optimizer condition. This highlights the significant promise of the
cooperative optimization interface and approach presented. This second study aims to learn about experts’
viewpoints and experiences working on their custom optimization problem using the cooperative approach. We
investigate both the experience of designing with the cooperative optimization approach as well as the ease or
difficulty associated with integrating the design tool into their prototype application. This investigation leverages
the web interface integration capability described in Section 3.5 and illustrated in Figure 6. There are thus two
main hypotheses that we aim to test in this study.

• H1 : The Cooperative method can be applied to common forms of interaction design problems.
• H2 : The users perceive high usability when operating the interface and the system of the Cooperative

method to address an existing interaction design problem.

As in the simulated design tasks in Study 1, the cooperative web interface allows the expert participants to
actively explore the design space by adjusting the parameter sliders, to access suggestions from MOBO whenever
they need, as well as the use of the forbidden region and range features.

6.1 Participants
We recruited three interaction researchers (all PhD students in Human-Computer Interaction) aged 24 to 26.
Each participant brought their own design problem and prototype implementation to the study. We constrained
recruitment to participants with a prototype implementation in Unity since this is the current target of the
supporting integration package. Participants were also required to have basic development skills since they are
asked to independently integrate with the web API.

6.2 Study Method
The study was divided into four stages:
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(a) Cooperative optimization web interface. The left hand side of the interface provides two fields for specifying the IP address
and Port for the listener running within the Unity application. There is a ‘Send Design’ button below these fields which is
clicked to send the specified design parameters to the Unity application. The right hand side of the interface is the same as
that shown in Figure 1, although in this example there are only two design parameters.

(b) Unity demonstration application. The tutorial Unity application shown presents a reciprocal tapping task. The target
button is the yellow circle with black outline. The user begins an evaluation by clicking on the ‘Start’ button, and then clicks
on the button targets in sequence with their cursor. At any point, the user may click on the ‘Abandon’ button, which is then
treated as a heuristic evaluation. In this tutorial, the design is parameterized by the size of the button and the offset between
subsequent target buttons.

Fig. 6. Integration of web interface with the Unity demonstration application.

(1) The pre-study was conducted via email, and we asked expert participants to think about a few design
problems they currently face. Participants were then instructed to reflect on the following questions:
What are the parameters that govern the behavior and characteristics of this design? and How would
they measure the quality of a given design configuration (i.e. what performance objectives does it seek to
satisfy)?
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(2) A preparatory interviewwas then conducted prior to themain design exercise.We interviewed participants
about their design problem, the main parameters of the design, the main objectives relevant to the design,
as well as their usual practice in determining suitable design parameter values given these objectives.
We then introduced the Cooperative MOBO web interface, i.e., the tool, and Unity integration package
with a tutorial video. We asked the participants to consider whether they are able to reframe the design
problem into a simplified user task that takes less than two minutes to complete for a given parameter
configuration. Overall, this preparatory step served to introduce the web interface as a tool for facilitating
the optimization of their design problem and to help the participants prepare their design problem before
entering the design exercise. The preparatory interview took approximately 30 minutes. Participants were
given at least one evening break before starting the design exercise. This allowed participants to reflect
on the discussion and make any necessary changes to their prototype application.

(3) The design exercise proper ran for approximately two hours. The experimenter initially confirmed with
the participants about the framing of their design problem and design task, provided them with a link to
the GitHub page of the Unity package, and then had them follow the integration instructions indicated
in the GitHub repository README. As part of the tutorial, the Unity package includes a toy example
of a simple button design task for target acquisition using a cursor. This task interface is illustrated in
Figure 6b. When a new design is received, the size and offset of the button (yellow with black outline in
Figure 6b) are updated. The user can then press ‘Start’ to initiate a 2D reciprocal target acquisition task
based on the current design configuration. During the task, the user may choose to press the ‘Abandon’
button which suspends the current task and treats the observed performance as a heuristic evaluation.
Otherwise, the user completes the reciprocal tapping task by clicking on each button in sequence with
their cursor.

In this tutorial, the interaction behaviors are already integrated with the web interface and no code
modification is necessary. The tutorial provides participants with hands-on experience in using the
Cooperative optimization procedure and allows them to refer to an example of how to complete the
integration code. Once they had familiarized themselves with the procedure and integration, participants
started importing the package into their custom program andworking on the integration.The experimenter
would sit beside the participant and observe any hurdles encountered and offer minimal assistance only
when necessary. Having carried out the integration, participants were then instructed to utilize the
Cooperative MOBO web interface and identify at least three optimal designs that yield optimal trade-offs
between the two objectives. The participants directly evaluated the interface they were designing in order
to obtain real measures of performance for the defined objectives. We recorded the full log of interactions
and design evaluation results.

(4) Once the design exercise was complete, participants were asked to fill out the System Usability Scale
(SUS) questionnaire and a post-exercise questionnaire. Finally, we conducted a post-exercise interview,
where we asked participants about their impression of working with the Cooperative interface compared
to their usual practice in design optimization, how the results produced by the tool compared to those
obtained from their usual practice, what strategies they applied when using the tool, and what features of
the design tool they found useful.

6.3 Results
The three participants examined three distinct interaction problems relevant to their research. All involved a
prototype application developed in Unity and there was a common thread in that all design problems related to
an interaction for use in augmented or virtual reality.
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Table 5. Median responses on a seven point Likert scale from 1—very difficult to 7—very easy.

Statement P1 P2 P3

How straightforward was the process of integrating the design tool into your
application code?

6.0 6.0 7.0

How straightforward was the process of identifying suitable design parameters? 5.0 5.0 6.0
How straightforward was the process of identifying suitable design objectives? 5.0 7.0 6.0
How straightforward was the process of reframing your design problem as a
simplified user task?

7.0 4.0 6.0

Table 6. Median responses on a seven-point Likert scale from 1—strongly disagree to 7—strongly agree.

Statement P1 P2 P3

I found the “New Design from MOBO” button to be useful. 7.0 6.0 7.0
I found the ability to specify a “Forbidden Range” to be useful. 7.0 5.0 7.0
I found the ability to specify a “Forbidden Region” to be useful. 7.0 3.0 4.0
I was able to grasp the impact of each design parameter on the design objectives. 7.0 5.0 5.0
The tool allowed me to explore different design parameters to see how they
impacted the design objectives.

6.0 7.0 7.0

I felt that the optimal designs I have obtained make sense. 7.0 5.0 6.0
I am confident that I found the optimal designs in the design space. 7.0 5.0 5.0

The three participants completed their design exercises using the Cooperative interface. The proportion
of use of the ‘New Design from MOBO’ button was 61%, 29% and 50% for P1–3 respectively. All participants
obtained a set of Pareto optimal designs but the nature of the different design problems was such that each
participant obtained a different number of unique Pareto optimal designs: P1 found 4, P2 found 3 and P1 found 2.
All participants commented that suggestions provided by the ‘New Design from MOBO’ button encouraged them
to explore regions of the design space that went against their intuition but which in fact turned out to deliver
promising design candidates in terms of performance. These findings provide evidence in support of H1.

After completing the design exercise, participants responded to the statements summarized in Tables 5 and 6.
The responses in Table 5 generally indicate that the process of integrating and using the cooperative optimization
interface is relatively straightforward. Table 5 covers the experience of using the various features presented
in the interface. The feedback on most features was positive apart from the “Forbidden Region” which some
participants found initially confusing to interpret. We believe that with increased experience, users would be more
comfortable in inputting forbidden regions, as we observed in Study 1. Finally, the three participants completed
the System Usability Scale questionnaire with the instruction to focus on the integration and use of the design
tool. The usability ratings obtained were: 80, 100, and 94 which indicates very good usability [3]. These high SUS
scores provide evidence in support of H2.

7 DISCUSSION
Our focus in this paper is to propose and evaluate a mixed-initiative Cooperative method and interface which
allows for more control during the design optimization process compared to using a conventional MOBO
process with limited user input. Most significantly, our incorporation of forbidden regions and ranges into the
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Cooperative method allows the designer to obtain a design space coverage and final Pareto hypervolume that is
comparable to the Optimizer condition while allowing the designer to incorporate design intuition to guide the
design search with heuristic evaluations. This translated into a more efficient search of the design space with less
formal evaluations, as compared to both the Designer and Optimizer methods. Additionally, our findings in
terms of the significant difference in mean travel distance suggest that the Cooperative condition may have
promoted wider exploration and less potential design fixation than the Designer condition. When this result is
viewed in combination with the higher relative hypervolume obtained in the Cooperative condition compared
to the Designer condition, there is some evidence to suggest that the interface features provided encouraged
better trade-offs between exploitation and exploration. It is important to note, however, that there is some risk
that the Cooperative condition may be subject to the same good and bad biases of the designer encountered in
the Designer condition. These negative biases may manifest as unproductive exploitation of sub-optimal regions
that the designers think are promising or dismissal of optimal regions that the designers think are bad. The fact
that the relative hypervolume in the Cooperative condition remains below that achieved in the Optimizer
condition may indicate the persistence of these biases and motivates further work on how these biases might be
constructively managed.

Although the Cooperative method focuses on a canonical problem in multi-dimensional computational design
with heuristic and formal evaluations, it is still somewhat difficult to frame non-trivial design problems in such a
way that it is suitable for use. Further guidance is required on the parameterization of certain design problems
and how to tackle design problems involving categorical design parameters. Similarly, additional guidance on
the selection of objectives, particularly in the context of correlated objectives, would be beneficial. Standard
acquisition functions are generally robust to correlated objectives although there are more advanced functions
that may be employed in such circumstances [33]. In addition, our software is currently limited to only two
objectives. Extending this to three objectives and beyond would require exploration into different visualization
techniques to allow efficient exploration of the design space, as well as more efficient implementations of the
algorithms.

Methods inmulti-objective design optimization yield a variety of final design parameters that are Pareto-optimal.
However, in all three methods explored, there is little guidance offered on what to do once this Pareto-optimal
set is obtained. The literature in design engineering has suggested that creative design involves the co-evolution
of problem and solution spaces [15]. Applying this approach, the Pareto-optimal set could be treated as the new
design space from which the designer could select the final design. Although it may be reasonable to defer to the
designer when choosing the final design that satisfies an optimal trade-off, there could be guidance given in the
software implementation to suggest the best design candidate given the priorities expressed by the designer.

In future work, it would be interesting to explore what other direct interaction mechanisms could support
and incentivize designers to explore more of the design space while obtaining Pareto optimal designs in an
efficient manner in terms of the number of evaluations. Possible future directions could involve the design of
visualizations that allow designers to compare a set of promising new unexplored design candidates instead of
proposing just a single new design point. It would also be interesting to examine what algorithmic developments
in conjunction with visualizations can aid mixed-initiative efforts to further guide designers to new promising
design regions.

From our first study, we observed that participants may lose trust in MOBO during the Cooperative condition
in situations where the user employs MOBO too early and obtains poor suggestions. This early breakdown in
trust typically led to less reliance on MOBO as assistance during the design process. This echoes an overarching
problem of establishing and maintaining appropriate trust in human-AI interaction [12, 31]. Possible routes
of future work to tackle this problem could involve giving more explicit guidance on when to use MOBO to
propose a new design and giving the designer more transparency on how MOBO is proposing the new design
through interactive visualizations. There may also be opportunities to develop new algorithms that explicitly
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allow designers to control the relative level of exploration of the design space so as to meet user expectations of
the performance of the proposed design.

8 CONCLUSIONS
In this paper, we have proposed a cooperative multi-objective Bayesian design optimization approach that
allows designers to perform multi-objective design in a mixed-initiative manner. We specifically designed a new
optimization algorithm that takes in forbidden regions and ranges set by the designer so as to use information
from both formal and heuristic evaluations. We compared this Cooperative method to both the Designer
and Optimizer methods and showed that it is efficient in obtaining Pareto-optimal designs and promotes the
incorporation of designer intuition and control in the design process. We also demonstrated the Cooperative
method’s application to several different bespoke interaction design tasks, illustrating its versatility and efficacy
in practice with experts. Overall, we have introduced a cooperative multi-objective Bayesian design optimization
method and interface that provides both performance and design experience benefits, effectively combining the
advantages of conventional designer and optimizer-led methods.
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A DESIGN APPLICATION PARAMETER EXTREMES

(a) App 1: minimum parameter values. (b) App 1: maximum parameter values.

(c) App 2: minimum parameter values. (d) App 2: maximum parameter values.

(e) App 3: minimum parameter values. (f) App 3: maximum parameter values.

Fig. 7. Extreme parameter settings for the three design applications presented to participants in Study 1.
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B CONDITIONS AND APPLICATION BALANCING IN STUDY 1

Table 7. Balancing of Condition and Application order in Study 1.

P 1st 2nd 3rd
1 Designer : App 1 Optimizer : App 2 Cooperative : App 3
2 Designer : App 1 Cooperative : App 2 Optimizer : App 3
3 Cooperative : App 1 Designer : App 2 Optimizer : App 3
4 Cooperative : App 1 Optimizer : App 2 Designer : App 3
5 Optimizer : App 1 Cooperative : App 2 Designer : App 3
6 Optimizer : App 1 Designer : App 2 Cooperative : App 3
7 Designer : App 2 Optimizer : App 3 Cooperative : App 1
8 Designer : App 2 Cooperative : App 3 Optimizer : App 1
9 Cooperative : App 2 Designer : App 3 Optimizer : App 1
10 Cooperative : App 2 Optimizer : App 3 Designer : App 1
11 Optimizer : App 2 Cooperative : App 3 Designer : App 1
12 Optimizer : App 2 Designer : App 3 Cooperative : App 1
13 Designer : App 3 Optimizer : App 1 Cooperative : App 2
14 Designer : App 3 Cooperative : App 1 Optimizer : App 2
15 Cooperative : App 3 Designer : App 1 Optimizer : App 2
16 Cooperative : App 3 Optimizer : App 1 Designer : App 2
17 Optimizer : App 3 Cooperative : App 1 Designer : App 2
18 Optimizer : App 3 Designer : App 1 Cooperative : App 2
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