
Aiding Programmers using Lightweight
Integrated Code Visualization

Per Ola Kristensson
Department of Engineering

University of Cambridge, UK
pok21@cam.ac.uk

Chung Leung Lam
Computer Laboratory

University of Cambridge, UK
cll48@cantab.net

Abstract
We present a Lightweight Integrated Code Visualization
(LICV) tool designed to aid programmers using Integrated
Development Environments (IDEs). LICV is implemented
as a plug-in for the Eclipse IDE for Java Developers. LICV
continuously tracks the active editor in the IDE and visu-
alizes up to 24 code features in a designated non-intrusive
view. LICV is designed to facilitate fast understanding of
the structure of the code in order to help users carry out
routine programming tasks. It enables users to zoom, filter,
search, and go back and forth between the code and the vi-
sualization via direct manipulation. We evaluated LICV by
carrying out two user studies which compared LICV against
regular Eclipse in four tasks. We found that LICV signifi-
cantly reduced participants’ completion times by nearly 50%
for three out of four tasks. Further, participants significantly
preferred using LICV to perform the tasks.

Categories and Subject Descriptors D.2.3 [Coding Tools
and Techniques]: Program editors

Keywords Code visualization, integrated development en-
vironment, lightweight integrated code visualization

1. Introduction
Programming is a difficult error-prone process and as con-
sequence tremendous research efforts have been devoted
to aiding programmers. One approach has been to develop
new programming languages and environments, such as
Smalltalk. Another example is the code bubbles paradigm
[1], which has been implemented in the systems Code Can-
vas [3] and Debugger Canvas [4].

Figure 1. A Java class in the Eclipse code editor (left) and
its visualization in LICV (right). The code window has been
resized to the same size as the LICV visualization window
for clarity. In actual use the LICV window is considerably
smaller than the code window.

A second approach has been to improve existing pro-
gramming environments that are already widely used. Com-
mon approaches include improving programmers’ ability
to understand and use Application Programming Interfaces
(APIs) (e.g. [14, 21]) or improving code autocomplete
(e.g. [2, 17]. Some tools tackle particular difficult program-
ming activities, such as debugging, for example the Whyline
system [12].

A third approach is to aid programmers via software vi-
sualization. Such visualizations extract features (sometimes
called software metrics or code metrics) and underlying
structures from the code and display them in ways that can
aid program comprehension. Various software visualization
techniques have been developed, such as Class Blueprints
[5], Polymetric Views [13] and fisheyes [7–9].

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from Permissions@acm.org.

PLATEAU’15, October 26, 2015, Pittsburgh, PA, USA
c© 2015 ACM. 978-1-4503-3907-0/15/10...$15.00

http://dx.doi.org/10.1145/2846680.2846683

17

(a) Overview (b) Zoom 1 (c) Zoom 2 (d) Zoom 3 (e) Zoom 4

Figure 2. Visualization of source code at an overview level and at four different zoom levels.

However, most of these interfaces radically modify a part
of the programmer’s existing user interface. For example,
software visualizations such as Polymetric Views [13] re-
quire a large part of the screen estate of the IDE and new
autocomplete techniques change programmers’ existing be-
havioral patterns for quickly typing code.

In this paper we explore an alternative lightweight ap-
proach which does not radically change the user interface.
Instead, it provides a complementary interactive visualiza-
tion view that enables users to perceive structures in their
active code editor at a glance. The closest previous work in
this direction is possibly Microprints [19], which visualizes
each character in the code as an individual pixel. However,
Microprints is a non-interactive visualization. In our work,
the underpinning design principle behind our system is to
combine several useful user interface techniques: hierarchi-
cal tree-based code visualization, incremental search, filter-
ing, and bidirectional navigation between the active code ed-
itor and the interactive code visualization.

We call this paradigm Lightweight Integrated Code Visu-
alization (LICV). The central hypothesis is that LICV can
aid programmers with routine programming tasks, such as
for example modifying a single line of code in several simi-
lar methods in a class, since it provides the programmer with
a non-intrusive complementary structural view of the code.

A LICV is based on the following design principles:

Secondary Interface A LICV complements existing code
editors and IDEs rather than replaces them. A LICV is
designed to aid some subset of tasks rather than serve as
a radical complete replacement of existing solutions.

Lightweight A LICV is a calm interface [22]. It achieves
this by 1) being unobtrusive; 2) using a structurally sta-
ble visualization; 3) preserving screen real-estate for the
IDE; and 4) avoiding scrolling by projecting the entire
interface and visualization onto visible space.

Visual Information-seeking Mantra A LICV follows “Over-
view first, zoom and filter, then details-on-demand” [20]
by: 1) allowing user-controlled zoom-level (granularity)
of the visualization; 2) enabling filtering by elements or
by incremental search; and 3) providing direct paths from
visualization elements to code.

Smooth Novice to Expert Transition A LICV enables a
smooth novice-to-expert transition by being unobtrusive
in the IDE. Gradually during occasional use, the pro-
grammer becomes increasingly familiar with the LICV
visualization and can thereby exploit its advantages with-
out dedicated training sessions.

In order to explore if LICV has a potential to aid pro-
grammers in routine programming tasks, we designed a
LICV system that complements existing language and IDE
paradigms. In the next section we explain how LICV sup-
ports programmers and how we implemented it as a plug-in
for the Eclipse IDE for Java Developers. Thereafter we re-
port how we evaluated LICV’s performance against regular
Eclipse. We found that while error rates are nearly identical
for both systems, LICV reduces completion times by nearly
50% for three of the four tasks we investigated. We also re-
port how a secondary replication experiment later supported
these results.

2. Interactive Visualization of Code Features
Our system is implemented as a plug-in to the Eclipse IDE
for Java Developers (version 3.6.1). Users activate LICV by
enabling a designed View in Eclipse. Figure 1 shows how
LICV by default visualizes a small demo class. The elements
of the class (called “code features” in this paper; sometimes
similar features have been referred to as “software metrics”
(e.g. [13])) are shown in a hierarchical tree structure accord-
ing to the Abstract Syntax Tree (AST) of the class file. Table

18

1 lists all 24 code features that are currently supported by the
system.

Users can zoom in and out in the visualization. This is
particularly useful when viewing large class files. Figure 2
shows the Java class in Figure 1 visualized at five different
zoom levels.

2.1 Code Features
The system works by extracting 24 features from Java source
code files by parsing their Abstract Syntax Trees (ASTs).
The ASTs for the Java source code files are generated by
the Eclipser Compiler for Java (ECJ). A summary of all 24
code features that are currently supported by the system are
shown in Table 1.

Since the system often cannot visualize 24 code features
simultaneously we created a ranked list of code features that
is used by the system to prioritize among them.

We divided the 24 code features into seven code fea-
ture groups: exception handling, local variable declarations,
method invocations, field access, iteration constructs, flow
control, and unranked code features. Table 1 shows group
memberships for all 24 code features.

The ranks were estimated by examining publicly avail-
able Java source code files. We first downloaded 5,044 Java
source code files with a total of 69,354 methods from five
open-source Java projects (Eclipse Java Development Tool,
Apache Ant, Apache Derby, SVNKit, and Sweet Home 3D).
We then ranked each code feature group based on its code
features’ frequency of occurrence within each method. This
resulted in 69,354 rankings.

We then aggregated these rankings using Kemeny optimal
aggregation [10]. We used this particular rank aggregation
method because Young and Levenglick [23] have shown that
it is the only method that satisfies three attractive criteria for
rank aggregation: neutrality, consistency, and the Condorcet
criterion. The final aggregated ranks for the code feature
groups are shown in Table 1.

2.2 Visualizing Code Features
We designed visualization elements as rectangular shapes so
that they can be easily aligned and nested, thereby improv-
ing the user’s ability to quickly glance at the visualization to
perceive structure (a reminiscent visualization strategy has
been used by the Path Projection system [11] to visualize
call stacks). Each visualization element has a label that car-
ries two pieces of information: the depth of the code feature
in the parse tree and the type of code feature. Visualization
elements also have a designated color. This enables users
to quickly locate particular code features and it also enables
expert users to quickly see particular recurring graphical pat-
terns in the visualization (such as visual patterns generated
by getter-and-setter methods).

The system extracts code features from the AST of the
source code file of the active code editor in Eclipse. We parse
the AST and perform a topology-preserving transformation

Table 1. List of code features with examples.
Code Feature Example

Exception handling (rank = 1)
Try Block try {...
Catch Block catch (Exception e) {...
Throw Statement throw new Exception();

Local variable declarations (rank = 2)
Local Variable int a = 5;

Method invocations (rank = 3)
Method Invocation a(0);

Super-Method Invocation super.a(0);

Constructor Invocation new A(0);

Super-Constructor Invocation super(0);

Field Access (rank = 4)
Field Access this.a = 5;

Super-Field Access super.a = 5;

Iteration constructs (rank = 5)
For-Loop for (i=1; i<n; i++) {...
Enhanced For-Loop for (Int i : ints) {...
While-Loop while (a > 5) {...
Do-While-Loop do {...

Flow control (rank = 6)
Control Block if (a > 5) {...
Switch Block switch (a) {...
Conditional Expression ...a > 5 ? 0 : 1...

Case Block case 1: ...

Return Statement return a;

Break Statement break;

Miscellaneous (unranked—always shown)
Field int a;

Anonymous Class Block return new A(){...
Synchronized Block synchronized (a) {...
New Class Instance A a = new A();

that eliminates all nodes in the AST that are not code fea-
tures (such as for example the Body nodes). This results in
what we call a code feature tree. Figure 3 illustrates how a
visualization is mapped from the original source code.

Visualization elements are nodes in the code feature tree.
Visualization elements preserve the hierarchy of the code
feature tree but all corresponding visualization elements are
not necessarily shown to the user. An important design de-
cision was to enable lightweight visualization. The visual-
ization is meant to be used in tandem with the code editor
and any other supporting views that are open in the user’s
IDE. Therefore, the visualization must be flexibly designed
so that it can function effectively in a relatively small win-
dow (which may occasionally get resized by the user). It
should also be designed to be relatively structurally stable
in order to avoid distracting the programmer by complete
layout reconfigurations. Another related design requirement
was that users should never have to scroll within the visual-

19

(a) Source code

Method

Class

Field

Control
block

Field
access

Control
block

Field
access

(b) Tree structure (c) Visualization

Figure 3. Source code, its tree representation, and its nested tree visualization.

ization window as this prevents users from quickly glancing
at the visualization while they are working in the code editor.

The visualization handles the problem with limited screen
estate in a variety of ways. First, the visualization hides code
features according to their ranking if there is not sufficient
space to show all visualization elements.

Second, the visualization supports different zoom-levels.
Zoom-levels are hints from the user that tells the system the
granularity of the visualization the user is likely to be inter-
ested in. Figure 2 shows five different zoom levels for the
source code file in Figure 1. The first zoom-level provides
a general overview of the classes, class variables and meth-
ods of the file that is visualized. The remaining zoom levels
visualize the code features of the file in increasingly higher
resolution. Whether a code feature is shown for a particular
zoom level depends on its rank and its nesting level in the
code feature tree.

2.3 Editor Integration
LICV is tightly integrated with the active code editor in the
Eclipse IDE. The system tracks the user’s editing operations
and updates the visualization in real-time with no perceptu-
ally noticeable delay as the user is typing or editing code.
This is unlike other lightweight software visualization ap-
proaches (such as transient visualizations [8]), which need
to be explicitly invoked by the user (however note that tran-
sient visualizations were designed for a different purpose
than LICV).

It is often difficult to achieve a smooth novice-to-expert
transisition for advanced development tools [18]. We conjec-
ture that visualizations that automatically and continuously
update themselves enable the visualization to be part of the
user’s “peripheral” vision. We suggest that such automatic
code visualization can help a novice to gradually learn how
the code visualization works. This can be an important fea-
ture as it is likely that some users do not wish to invest time
into learning how code visualization works through a tutorial
or similar training support.

Figure 4. When the user selects code in the editor the
system automatically indicates the corresponding code el-
ements in the visualization with a yellow rectangle.

In order to support users retrieving details on demand,
when the user clicks on a visualization element the system
automatically locates the corresponding code in the active
editor and scrolls the editor window so that the code be-
comes visible to the user. If the user selects code in the active
editor the system will highlight the corresponding visualiza-
tion elements. Figure 4 shows how selecting the if block in
the active editor results in the system highlighting the corre-
sponding Control-Block in the visualization window (in-
cluding any nested elements that can fit within the current
size of the window and are permissible according to the cur-
rent zoom-level and filter settings of the visualization).

2.4 Filtering
Filtering enables the user to focus on the aspects of the code
visualization that matters the most for a given task. LICV
provides two different methods for filtering.

One way for users to filter is by using incremental search.
At the bottom of the LICV window is a search field (see Fig-
ure 1). When the user types text into the search field the
system performs a case-sensitive incremental search on the
underlying code that generated the currently shown visual-
ization. The system then only shows visualization elements

20

(a) Filter (b) Result

Figure 5. Filtering the visualization so that it only includes
Field-Access and code features that cannot be removed
(classes, methods and constructors).

whose underlying code matches the incremental search
query.

Filtering by incremental search enables the user to quickly
focus on particular aspects of the code, such as for example
all methods and instance variables that have protected ac-
cess. In many cases the user only needs to type pro for the
system to filter out any other visualization elements.

Another way for users to filter is to bring up a pull-down
menu with all code features. The user can use this pull-
down menu to visualize all, none, or particular code features.
However, three code features are always shown regardless
of filter settings: classes, methods and constructors. Figure
5 illustrates how the user has configured the filter so that
Field-Access is the only optional code feature to be visu-
alized.

3. Evaluation
Our central hypothesis is that LICV will aid programmers in
performing a series of routine programming tasks. We pre-
dict the combination of lightweight visualization and tight
integration with the IDE will enable experienced Eclipse
users to perform a set of tasks faster than using the regular
Eclipse IDE.

One relatively inexpensive yet reasonably rigorous ap-
proach to assess the initial viability of LICV is controlled
experiments. This evaluation paradigm is not unusual when
evaluating software engineering and programming tools
(e.g. [6, 7]) when measurable objective functions have been
identified, such as completion times, errors and users’ pref-

erences. However, controlled experiments also have certain
limitations. In particular, in the context of software engineer-
ing, controlled experiments have been criticised for being
“one-off” results that are seldom replicated [15].

To increase the validity of our findings we carried out the
same experimental design twice with two different sets of
participants (and slightly different setups). As we we will
see, the second replication experiment confirmed the results
of the first experiment.

3.1 Method
We evaluated LICV using a within-subjects experimental de-
sign. We compared LICV against the regular Eclipse IDE in
four different experimental tasks. In other words, the inde-
pendent variable was Tool with two levels: LICV and regu-
lar Eclipse. The order of these two conditions was balanced
across the participants to avoid any learning effects.

We measured three dependent variables: completion time
(in seconds), errors, and users’ subjective preference on an
ordinal scale (1 = minimum preference, 11 = maximum
preference).

The four experimental tasks were chosen based on Java
programmers’ usage patterns when using the Eclipse IDE
[16]. Similar tasks have also been used before, for exam-
ple to evaluate fisheye visualization of Java source code in
Eclipse [9]. We do not claim these four tasks are representa-
tive of everyday programming activities. As this was an ini-
tial formative evaluation we opted for constrained tasks that
favor internal validity at the expense of external validity.

3.1.1 Task 1
Participants were provided with 280 lines of well-formatted
Java code that described a single class. The code included
comments. Participants were instructed to perform two sub-
tasks by reading the code and attending to the visualization
(in the condition that included the visualization).

The first subtask was to count the number of global (class)
variables in the code. In the baseline condition this subtask
could be achieved by either using Eclipse’s Outline View or
by directly reading the code. In the visualization condition
this subtask could also be achieved by counting the number
of corresponding elements in the visualization.

The second subtask was to locate all the class construc-
tors in the code and then to give the line number of the first
line for each constructor. In the baseline condition this sub-
task could be achieved by either using Eclipse’s Outline View
or by directly reading the code. In the visualization condition
this subtask could also be achieved by clicking on all ele-
ments in the visualization that contained the keyword “Con-
structor”. This action triggered the system to automatically
display the corresponding code in the Eclipse code editor
window (scrolling the code editor window, if necessary).

21

3.1.2 Task 2
Participants were provided with well-formatted Java code
and requested to focus on a block of nested loops consisting
of 104 lines. Participants were instructed to answer whether
six statements about the code were true or false.

The statements were the following:
1. The outermost loop is a while loop but not a do-while

loop.
2. The outermost loop contains a break statement.
3. The second nested level has a do-while loop.
4. The second nested level has more than one loop.

For the following questions, “nested level” of the outermost
loop is 1.
5. The deepest nested level of this block is 4.
6. The deepest loop is an enhanced for-loop.

In the baseline condition this task could be achieved by
using the search function or by directly reading the code.
In the visualization condition this could also be achieved by
highlighting the code and then applying filters in the code
visualization so that only loops and break statements are
visualized.

3.1.3 Task 3
Participants were provided a file with 890 lines of well-
formatted Java code. Participants were instructed to identify
and resolve a runtime exception caused by a given method
call statement that appeared multiple times in the file. Par-
ticipants were instructed to search and check each suspected
statement in order to find the error that causes the runtime
exception. Once the error was detected they were asked to
fix it. This required adding a single line of code. Two sep-
arate files consisting of 890 lines each were used for this
task as the same error cannot be present in both conditions.
The order of these files were counterbalanced to avoid any
potentially confounding crossover effects.

In the baseline condition participants could achieve this
by searching, filtering and locating the provided statement
using the search function of Eclipse and thereafter inspect
(and possibly modify) the code in the editor directly. In
the visualization condition participants could also achieve
this by first setting the code feature filter to only visualize
method invocations and then using incremental search to
locate all the suspected method call statements. Once located
the participant would inspect (and possibly modify) the code
in the editor directly.

3.1.4 Task 4
Participants were provided a large file consisting of well-
formatted Java code and instructed to insert a single state-
ment just before the return statement in all methods in the
file. Participants were told to type the statement the first time

and then copy and paste the statement for all remaining in-
stances.

In the baseline condition participants could achieve this
by using Eclipse’s search function to locate the correct lines
in the code and thereafter add the required statement. In the
visualization condition participants could also achieve this
by first using the code feature filter to filter out all code
features in the visualization except for return statements.
Thereafter they could click on elements in the visualization
that contained the keyword “Return-Statement”. This action
makes the system locate the corresponding return statement
in the code editor and highlight it. Following this action they
could then add the required statement right before the return
statement.

3.2 Experiment 1: Lab Study
In the first experiment we recruited nine computer science
students via convenience sampling. The participants had on
average four years of experience with Java (sd = 1.6) and
three years of experience with the Eclipse IDE for Java
(sd = 1.6). The least experienced participant had one year
of experience and the most experienced participant had six
years of experience with Java and Eclipse.

Participants used the Eclipse IDE version 3.6.1 in the
experiment. To provide a consistence development platform
for all the participants, all the experiments were conducted
on a MacBook Pro with Eclipse IDE for Java Developers
3.6.1 running on Mac OS X 10.6.7. The experiment was
conducted in a quiet office. The Eclipse keyboard bindings
were adjusted to match the participants’ prior experience (a
Windows user would use Windows key-bindings, and so on).

Before testing, participants were demonstrated how LICV
works within Eclipse and offered a few minutes to familiar-
ize themselves with the laptop and the Eclipse environment.

Thereafter they were asked to complete the four tasks we
described in the previous section.

3.2.1 Results
We analyzed errors and completion times using repeated
measures analysis of variance at the α = 0.05 significance
level.

The mean errors were (LICV vs. baseline): 0 vs. 0.6 for
task 1, 0.2 vs. 0.9 for task 2, 0 vs. 0.7 for task 3 and 0
vs. 0 for task 4. Only the mean error difference in task 2
was statistically significant (F1,8 = 16.000, η2p = 0.667, p <
0.005).

Completion time was measured as the number of seconds
participants spent on the task. The time interval was from
when the participants opened the Java code file for the task
to when the participants stated that they had completed the
task. As completion times (similar to response times) are
heavily skewed we log-transformed them before the statis-
tical analysis.

As can be seen in Figure 6, participants were substantially
faster in tackling tasks 1, 2 and 4 using LICV. Mean comple-

22

0

50

100

150

200

250

300

Task 1 Task 2 Task 3 Task 4

Co
m

pl
et

io
n

tim
e

(s
)

Task

Baseline

LICV

Figure 6. Completion times (in seconds) and 95% confi-
dence intervals as a function of the task in experiment 1.

tion times were (LICV vs. baseline): 35 vs. 75, 57 vs. 152,
223 vs. 227 and 45 vs. 78 seconds. The mean completion
time differences in task 1, task 2 and task 4 were statistically
significant (F1,8 = 6.761, 37.602 and 16.552, η2p = 0.458,
0.825 and 0.674, p < 0.05, 0.0001 and 0.005).

Participants were asked to rate their preferences for both
the baseline and the visualization method when they solved
the tasks. Participants rated their preference on an 11-point
Likert scale (1 = minimum preference, 11 = maximum pref-
erence). Median preferences were (LICV vs. baseline): 8
vs. 5 for task 1, 9 vs. 3 for task 2, 8 vs. 5 for task 3 and
7 vs. 7 for task 4. Friedman’s test at the α = 0.05 signifi-
cance level showed that the differences in preferences were
statistically significant for tasks 1–3 (χ2 = 4.500, 5.444 and
5.444, df = 1).

3.3 Evaluation 2: Replication with Remote Users
In the replication experiment we recruited seven participants
via convenience sampling. The participants had on average
five years of experience with Java (sd = 1.6) and three years
of experience with the Eclipse IDE for Java (sd = 1.3). The
least experienced participant had three years of experience
with Java and one year of experience with Eclipse, while the
most experienced participant had eight years of experience
with Java and five years of experience with Eclipse.

Apart from participants performing the tasks on their own
laptops, the procedure was identical to the first experiment.
Participants were instructed and supervised via a videocon-
ferencing facility.

3.3.1 Results
Participants made very few errors. The mean errors were
(LICV vs. baseline): 0 vs. 0.14 for task 1, 0 vs. 0.57 for task
2, 0.71 vs. 1.0 for task 3 and 0 vs. 0 for task 4. None of the
differences were statistically significant.

We found that LICV dramatically reduced completion
times for tasks 1, 2 and 4. Mean completion times were

(LICV vs. baseline): 23 vs. 98, 49 vs. 140, 208 vs. 270 and
38 vs. 75 seconds. The mean completion time differences in
task 1, task 2 and task 4 were statistically significant (F1,6 =
22.373, 62.636 and 25.670, η2p = 0.789, 0.913 and 0.811, p
< 0.005, 0.0001 and 0.005).

We found that users significantly preferred to use LICV.
Median preferences were (LICV vs. baseline): 9 vs. 5 for
task 1, 9 vs. 2 for task 2, 8 vs. 4 for task 3 and 8 vs. 5 for
task 4. Friedman’s test at the α = 0.05 significance level
showed that the differences in preferences were statistically
significant for all four tasks (χ2 = 7.000, df = 1).

In summary, the replication experiment verified the re-
sults we obtained in the first experiment. LICV significantly
reduces completion times for tasks 1, 2 and 4. Furthermore,
users significantly prefer to use LICV.

4. Discussion
The two experiments demonstrated that LICV resulted in
significantly faster completion times for three out of the
four experimental tasks we investigated. Moreover, users
preferred LICV over the regular Eclipse IDE, even though
they had at least one year of experience with it and had only
been exposed to LICV for a very short amount of time.

However, we caution against overinterpreting the experi-
mental results. A limitation with the evaluation is the partic-
ular selection of experimental tasks. LICV does not appear
to have helped much in reducing completion times for task 3,
a debugging task, which is the task that took the participants
the longest amount of time. Therefore, it is possible that
LICV is not as efficient for debugging as in assisting with
basic program comprehension and routine program editing.
This is not surprising as debugging is a complex program-
ming activity and as a consequence several advanced sys-
tems have been developed to support debugging tasks, such
as Whyline [12].

Another limitation is the fact that we assessed LICV’s
performance in controlled experiments under a limited
amount of time. While such studies are useful in verifying
initial hypotheses, they tell us little about actual use in real
tasks. Such insights can only be captured via longitudinal
in-situ studies, for example longitudinal evaluations based
on experience sampling and log studies [9]. The two experi-
ments are neither large enough, nor diverse enough in terms
of the tasks they explore, to conclusively state whether LICV
is successful in aiding programmers with routine tasks. Fi-
nally, while we have evaluated a few points in the possible
LICV design space there are certainly many design parame-
ters that can be explored in future work, such as the choice
of code features, means of prioritizing code features, and
visualization strategies for code features.

5. Conclusions
In this paper we have presented Lightweight Integrated Code
Visualization (LICV) as an approach for improving pro-

23

grammers’ productivity. LICV is based on four design prin-
ciples: 1) it is a secondary interface; 2) it is lightweight; 3)
it follows the visual information-seeking mantra; and 4) it
supports a smooth novice-to-expert transition.

We implemented a LICV tool as a plug-in for the Eclipse
IDE for Java Developers. We evaluated our LICV tool in two
controlled experiments and found that LICV significantly
reduced participants’ completion times by nearly 50% for
three out of four tasks. Furthermore, participants also signif-
icantly preferred using LICV to perform the tasks. LICV and
regular Eclipse performed similar in terms of errors.

We hope the positive indicative results in this paper will
lead to further design explorations of lightweight integrated
code visualization to support existing programming environ-
ments and work practices.

References
[1] A. Bragdon, S. P. Reiss, R. Zeleznik, S. Karumuri, W. Che-

ung, J. Kaplan, C. Coleman, F. Adeputra, and J. J. LaViola,
Jr. Code Bubbles: Rethinking the user interface paradigm of
integrated development environments. In Proceedings of the
ACM/IEEE International Conference on Software Engineer-
ing (ICSE 2010), pages 455–464. ACM Press, 2010.

[2] M. Bruch, M. Monperrus, and M. Mezini. Learning from
examples to improve code completion systems. In Proceed-
ings of the the Joint Meeting of the European Software En-
gineering Conference and the ACM SIGSOFT Symposium on
the Foundations of Software Engineering (ESEC-FSE 2009),
pages 213–222. ACM Press, 2009.

[3] R. DeLine and K. Rowan. Code Canvas: Zooming towards
better development environments. In Proceedings of the
ACM/IEEE International Conference on Software Engineer-
ing (ICSE 2010), pages 207–210. ACM Press, 2010.

[4] R. DeLine, A. Bragdon, K. Rowan, J. Jacobsen, and S. P.
Reiss. Debugger Canvas: Industrial experience with the Code
Bubbles paradigm. In Proceedings of the International Con-
ference on Software Engineering (ICSE 2012), pages 1064–
1073. IEEE Press, 2012.

[5] S. Ducasse and M. Lanza. The Class Blueprint: Visually
supporting the understanding of classes. IEEE Transactions
on Software Engineering, 31(1):75–90, 2005.

[6] A. Dunsmore, M. Roper, and M. Wood. The development and
evaluation of three diverse techniques for object-oriented code
inspection. IEEE Transactions on Software Engineering, 29
(8):677–686, 2003.

[7] M. R. Jakobsen and K. Hornbæk. Evaluating a fisheye view
of source code. In Proceedings of the ACM Conference on
Human Factors in Computing Systems (CHI 2006), pages
377–386. ACM Press, 2006.

[8] M. R. Jakobsen and K. Hornbæk. Transient visualizations.
In Proceedings of the Australasian Conference on Computer-
Human Interaction (OzCHI 2007), pages 69–76. ACM Press,
2007.

[9] M. R. Jakobsen and K. Hornbæk. Fisheyes in the field: using
method triangulation to study the adoption and use of a source
code visualization. In Proceedings of the ACM Conference

on Human Factors in Computing Systems (CHI 2009), pages
1579–1588. ACM Press, 2009.

[10] J. G. Kemeny. Mathematics without numbers. Daedalus, 88
(4):577–591, 1959.

[11] Y. P. Khoo, J. S. Foster, M. Hicks, and V. Sazawal. Path pro-
jection for user-centered static analysis tools. In Proceedings
of the ACM SIGPLAN-SIGSOFT Workshop on Program Anal-
ysis for Software Tools and Engineering (PASTE 2008), pages
57–63. ACM Press, 2008.

[12] A. J. Ko and B. A. Myers. Designing the Whyline: A debug-
ging interface for asking questions about program behavior.
In Proceedings of the ACM Conference on Human Factors in
Computing Systems (CHI 2004), pages 151–158. ACM Press,
2004.

[13] M. Lanza and S. Ducasse. Polymetric Views—A lightweight
visual approach to reverse engineering. IEEE Transactions on
Software Engineering, 29(9):782–795, 2003.

[14] D. Mandelin, L. Xu, R. Bodı́k, and D. Kimelman. Jungloid
mining: Helping to navigate the API jungle. In Proceedings
of the ACM SIGPLAN Conference on Programming Language
Design and Implementation (PLDI 2005), pages 48–61. ACM
Press, 2005.

[15] J. Miller. Replicating software engineering experiments: A
poisoned chalice or the Holy Grail. Information and Software
Technology, 47:233–244, 2005.

[16] G. C. Murphy, M. Kersten, and L. Findlater. How are Java
software developers using the Eclipse IDE? IEEE Software,
23(4):76–83, 2006.

[17] A. T. Nguyen, H. A. Nguyen, T. T. Nguyen, and T. N.
Nguyen. Grapacc: A graph-based pattern-oriented, context-
sensitive code completion tool. In Proceedings of the Inter-
national Conference on Software Engineering (ICSE 2012),
pages 1407–1410. IEEE Press, 2012.

[18] M. Petre. Why looking isn’t always seeing: Readership skills
and graphical programming. Communications of the ACM, 38
(6):33–44, 1995.

[19] R. Robbes, S. Ducasse, and M. Lanza. Microprints: A pixel-
based semantically rich visualization of methods. In Proceed-
ings of International Smalltalk Conference, pages 131–157,
2005.

[20] B. Shneiderman. The eyes have it: A task by data type
taxonomy for information visualizations. In Proceedings of
the IEEE Symposium on Visual Languages, pages 336–343.
IEEE Press, 1996.

[21] J. Stylos, B. A. Myers, and Z. Yang. Jadeite: Improving API
documentation using usage information. In Extended Ab-
stracts of the ACM Conference on Human Factors in Com-
puting Systems (CHI 2009), pages 4429–4434. ACM Press,
2009.

[22] M. Weiser and J. S. Brown. Designing calm technol-
ogy. PowerGrid Journal, Version 1.01, 1996. http://www.

powergrid.com/1.01/calmtech-essence.html.

[23] H. P. Young and A. Levenglick. A consistent extension of
Condorcet’s election principle. SIAM Journal on Applied
Mathematics, 35(2):285–300, 1978.

24

