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ABSTRACT
In this paper we present a new bimanual markerless gesture
interface for 3D full-body motion tracking sensors, such as
the Kinect. Our interface uses a probabilistic algorithm to
incrementally predict users’ intended one-handed and two-
handed gestures while they are still being articulated. It sup-
ports scale and translation invariant recognition of arbitrarily
defined gesture templates in real-time. The interface supports
two ways of gesturing commands in thin air to displays at
a distance. First, users can use one-handed and two-handed
gestures to directly issue commands. Second, users can use
their non-dominant hand to modulate single-hand gestures.
Our evaluation shows that the system recognizes one-handed
and two-handed gestures with an accuracy of 92.7%–96.2%.
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INTRODUCTION
3D full-body motion tracking sensors enable users to interact
with TV sets and wall-sized displays using their own body.
However, an open research question is how to efficiently in-
teract with displays at a distance using such sensors. In this
work we use the Microsoft Kinect 3D full-body motion track-
ing sensor to design a bimanual continuous gesture interface
that recognizes one-handed and two-handed gestures while
they are being articulated by the user. The Kinect is a mark-
erless sensor system that tracks the user’s body as a skeleton
structure with 20 joints. We modify and extend a recently
published template-based continuous 2D gesture recognition
algorithm [3] so that it can process 3D output from a Kinect
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sensor. In doing so we are the first to present a general biman-
ual gesture recognizer for the Kinect sensor that can contin-
uously recognize arbitrarily defined gesture templates. Prior
work on the Kinect have focused on pose estimation [9] and
the latest Kinect Beta SDK (1.0.12) does currently not sup-
port gestures.

Gestures are natural components in human-human interaction
and human neuromuscular control is well-evolved to simul-
taneously facilitate fast learning and accurate recall of ges-
tures [7]. In the human-computer interaction (HCI) field, a
variety of 2D gesture recognition algorithms have been de-
veloped for touchscreens and tablets. These either use a sta-
tistical model (e.g. [8]), or various forms of template match-
ing (e.g. [1, 3, 10]). Outside the HCI field, gesture recog-
nition typically refers to 3D gesture recognition [4]. Such
gestures may be detected using a variety of sensors, such as
cameras and three-axis accelerometers. Common recognition
techniques include conditional density propagation, hidden
Markov models, and dynamic time warping [4].

In this paper we first introduce the concept of an input zone as
a gesture delimitation device for 3D full-body motion track-
ing sensors. We provide two reliable methods for determin-
ing whether the user’s hands are inside or outside this zone.
Thereafter we describe how we adapted a continuous recog-
nition algorithm [3] for the Kinect and extended it so that it
can recognize two-handed gestures. We show that our sys-
tem recognizes one-handed and two-handed gestures with an
accuracy of 92.7%–96.2% on held-out test data. Then we
present a new interface for simultaneous bimanual gesturing
and control that enables users to gesture with one hand and
make selections among the predicted gesture templates with
the second hand. Finally, we motivate our system by propos-
ing a range of applications. For example, we designed a text
entry method that enables users to write in thin air.

BIMANUAL CONTINUOUS GESTURE INTERACTION
We continuously track both hands of the user via the skeleton
structure we obtain from the Kinect. For each hand and sam-
ple point we receive a tuple (x, y, z, t), in which x, y and z are
the 3D coordinate estimates of the hand (in meters), and t is
a timestamp. We smooth this signal using a moving average
with an optimal window size learned from training data.

For our gesture recognition interface to work we need to be
able to reliably determine the beginning and the end of the
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gesture articulation by the user. To perform this delimitation
we use a zoning technique. When the user is interacting with
the Kinect we continuously measure the distance between the
user’s hand and the Kinect. When this distance is below a set
threshold the hand is defined to be within what we call the
input zone. A similar approach has previously been used to
delineate 3D selections [6]. We experimented with various
thresholds. One solution is to use the absolute distance be-
tween the user’s hand and the Kinect. We implemented this
solution and used a threshold of 1.5 meters in front of the
Kinect. While this solution proved to be robust, it may in
some situations be advantageous to have a flexible input zone
that is invariant of the distance between the user’s body and
the Kinect. We therefore also developed a method for deter-
mining whether the user’s hand is within the input zone based
on a relative measure. It uses a binary classifier that is defined
as the following decision rule:

z(vb, vh, dh) =

{
1, if vb < γvb ∧ vh < γvh ∧ dh > γdh
0, otherwise ,

in which vb is the speed of the user’s body, vh is the speed
of the user’s hand, dh is the distance between the user’s hand
and the user’s body, and γvb, γvh and γdh are empirically de-
termined parameters. When z = 1 the user’s hand is within
the input zone. We set the thresholds for γvb, γvh and γdh
by estimating them from data gathered from four volunteers.
The participants held a wireless mouse in their right hand.
They were explained the concept of an input zone and then
asked to use a forward-motion to move their hand into the
input zone, then move the hand laterally, and thereafter pull
their hand out of the input zone. We instructed participants to
press and hold down the left mouse button when they felt that
their hand was within the input zone and to release the left
mouse button when they felt they were outside of the zone.
Based on this data we estimated the parameter values using
cross-validation. We evaluated the binary classifier by inves-
tigating how accurately it could classify a sample point as
being inside or outside the input zone using three tolerance
thresholds: 5, 10 or 15 sample points to the left or to the right
of the boundary. Cross-validation showed that the accuracy
was 88.0%, 91.2% and 93.4% respectively.

There is some noise in the signal when users are entering
and exiting the input zone. We therefore discard a portion
of the beginning and end of the trace, a process known as
de-hooking in the handwriting recognition community. The
de-hooking parameters are also learned from training data.

While the hand is within the input zone the system concate-
nates the projected (x, y) positions of the hand into a progres-
sively increasing input vector:

Ii = [(x1, y1), (x2, y2), . . . , (xi, yi)].

When a new sampling point is received the system computes
a posterior probability for gesture template ωk as:

P (ωk|Ii) =
P (ωk)P (Ii|ωk)∑
n P (ωn)P (Ii|ωn)

,

where P (ωk) is the prior probability and P (Ii|ωk) is the like-
lihood. If there are reasons to believe certain gestures are

more likely than others (for example, due to context), the
prior can reflect this. However, in the experiments reported
in this paper the prior is uniform. The likelihood is found by
searching for the sub-segment of the template ωj that max-
imizes the likelihood of a distance function in combination
with an end-point bias [3]. The continuous recognition algo-
rithm uses two features for the distance function: the mean
Euclidean distance and the mean turning angle between two
point vectors. The relative weighting between these two fea-
tures is controlled via a mixture weight parameter. For details
we refer the reader to the complete description of the contin-
uous gesture recognition algorithm [3].

In this paper we extend the continuous gesture recognition
algorithm so that it can also recognize two-handed gestures.
In this case we have two input vectors I

(l)
i and I

(r)
j for the

left- and right-hand gesture articulations respectively and we
are interested in the posterior probability for a bimanual ges-
ture ω(lr)

k . Assuming conditional independence under a joint
model this posterior probability is:
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are the likelihoods for the

left- and right-hand parts of the bimanual gesture template
respectively.

We also created a bimanual interface that enables users to
simultaneously using the dominant hand to gesture and the
non-dominant hand to modulate the recognition results. Fig-
ure 1 shows a user gesturing using this interface. In the figure
the user is writing text in thin air by gesturing Graffiti letters
(cf. Figure 2). While the user is gesturing the system continu-
ously updates the four most likely predicted gesture templates
to the left in the display. By moving the non-dominant hand
up or down the user can select among these alternatives. We
found that this style of interaction is particularly effective if a
user requires very high recognition accuracy.

Figure 1. A user is writing in thin air by gesturing Graffiti letters and
selecting among alternative predicted letters to the left of the display.

EVALUATION
We tested recognition accuracy on three gesture sets: the $1
gesture set [10], the Graffiti gesture set, and a bimanual ges-
ture set which we created ourselves. The $1 gesture set and
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the Graffiti gesture set have been previously used in recogni-
tion experiments (e.g. [3, 10]). The gesture sets are illustrated
in Figure 2.

Figure 2. The gesture sets used in the evaluation. The beginning of a
gesture is indicated by a solid dot. Top: the set of one-handed gestures
from the $1 gesture set [10]. Middle: the set of one-handed gestures from
the Graffiti alphabet. Bottom: the set of two-handed gestures we created
ourselves.

We used a Microsoft XBox 360 Kinect sensor connected to a
Windows 7 laptop. Each session was divided into a practice
and a testing part. In the practice part we explained to the
participants the concept of the input zone and demonstrated
how to articulate gestures with the Kinect. In the testing part
participants were shown a series of gestures on the screen and
asked to reproduce them as quickly and as accurately as pos-
sible. To ensure reproducibility we used an absolute distance
of 1.5 meters between the participant’s hand and the Kinect
to decide whether the participant’s hand was inside or outside
the input zone.

We recruited 18 volunteers from our university campus. Their
ages ranged between 18–35. None of the participants had any
prior experience of using a Kinect sensor. The 18 participants
were randomly split into two groups with nine participants
each to avoid effects due to fatigue and motor learning con-
founding the results. Participants in the first group were asked
to to articulate the gestures in the Graffiti and the bimanual
gesture sets. Each Graffiti gesture was performed once and
each gesture in the bimanual gesture set was performed five
times. In total, each participant in this group performed 27 +
16 × 5 = 107 gestures. Participants in the second group were
asked to to articulate the gestures in the $1 set. Each gesture
in the gesture set was performed five times. In total, each par-
ticipant in this group performed 16 × 5 = 80 gestures. This
data collection task lasted approximately 20–30 minutes for
each participant.

Recognizer (E,T,E+T) and input style Accuracy ∆
One-handed (E) 90.3% ·
One-handed (T) 92.3% 2.0%
One-handed (E+T) 92.7% 0.4%
Two-handed (E) 86.2% ·
Two-handed (T) 96.2% 10.0%
Two-handed (E+T) 96.2% 0%

Table 1. Accuracy and absolute gains in accuracy for complete one-
handed and two-handed 2D gestures. One-handed gesture recognition
was tested with the $1 [10] and the Graffiti gesture sets. Two-handed
gesture recognition was tested with a gesture set we designed ourselves.
E: Euclidean distance only, T: turning angle only, E+T: combination.

In total we collected 1683 one-handed and two-handed ges-
tures. We split the data into a training and test set by randomly
designating the gestures collected from four participants in
each group (eight participants in total) as the training set and
the rest of the gestures as the test set. The held-out test set
was only used for final evaluations. Using the training set we
searched for the optimal mixture weight for the continuous
gesture recognition algorithm and the two additional parame-
ters we have introduced in this paper: the window size of the
moving average used for smoothing, and the proportion of
the input gesture which is de-hooked. We used the parameter
configuration that maximized accuracy on the training set and
evaluated the algorithms on the held-out test set.

Table 1 summarizes the recognition results for complete ges-
tures. The system recognized complete one-handed gestures
with an accuracy of 92.7%. This is similar to prior work [3]
on recognition of pen stroke gestures drawn on a Tablet PC,
which found that continuous recognition of complete gestures
resulted in 94.5% accuracy. Also consistent with prior work
[3], the turning angle feature resulted in higher accuracy than
Euclidean distance. Combining both features using an opti-
mal mixture weight resulted in a negligible gain in accuracy.

The system recognized the two-handed gestures with an ac-
curacy of 96.2%, which is slightly higher than the accuracy
obtained for one-handed gestures. Again, the turning angle
feature resulted in higher accuracy than Euclidean distance.
Combining both features made no difference. Bimanual ges-
ture recognition was easier, which is unsurprising since un-
der an appropriate probabilistic model two simultaneous in-
put gestures provide additional information to the recognizer.

Figure 3 plots average accuracy as a function of the propor-
tion of a complete one-handed or two-handed gesture. The
solid lines in the figure show the performance of the contin-
uous gesture recognition algorithm. The dashed lines show
the performance of a baseline algorithm that only recognizes
complete gesture templates. The baseline algorithm uses op-
timal parameter values learned from the training set. Cross
marks denote the accuracy for top-1 matches while squares
denote the accuracy for top-3 matches.

As is evident in the figure, the continuous recognizer is much
better at predicting the participants’ intended gestures at all
stages of the articulation process. As a reference point, the
continuous gesture recognition algorithm was able to achieve
an accuracy of 46.0% for one-handed and 55.0% for two-
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handed gestures when participants had gestured only 20% of
the complete gesture (top-1 matches). This was an absolute
gain in accuracy of 39.3% and 38.4% compared to the base-
line for one-handed and two-handed gestures respectively.
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Figure 3. Accuracy for one-handed and two-handed gestures as a func-
tion of the proportion of the complete gesture for the continuous gesture
recognizer (solid lines) and a baseline recognizer (dashed lines). Cross
marks denote the accuracy for top-1 matches while squares denote the
accuracy for top-3 matches.

DISCUSSION
As in previous work (e.g. [1, 3, 10]), we only tested a few
gesture sets. Therefore, our results should be interpreted with
some care. Unfortunately there is no open collection of ges-
ture sets available for standardized comparisons.

We chose to delimit gestures via an input zone. Participants
felt this was natural and they quickly adapted to it. With 92.7–
96.2% accuracy for single-hand and two-handed gestures our
system is directly usable as a command interface for inter-
actions with displays at a distance, such as when users are
playing video games or interacting with wall-sized displays.

A potential application of our system would be as an input
technique in hospital operating rooms (ORs). ORs require
hospital workers to maintain the boundary between sterile
and non-sterile environments [2]. Our system enables hos-
pital workers to access and edit information while ensuring
this boundary is kept at all times. Also, unlike most gesture
recognition systems, our system performs recognition con-
tinuously while the user is gesturing. This enables hospital
workers to verify that the gesture will be correctly recognized
as the intended command before completing it. This min-
imizes the risk of recognition errors as hospital workers can
choose to abort the gesture if it is not properly recognized and
thus prevent an unintended command from being committed.

Another application of our system is as a text entry method
for writing in thin air. The 27 gestures in the Graffiti alphabet
we tested suffice to perform rudimentary text entry tasks, such
as writing a short message or filling out a medical form. Fig-
ure 1 shows a user writing in thin air using Graffiti. Our ges-
ture interface makes it possible to implement freehand Graf-
fiti input techniques for thin air that have previously only been
explored via a specialized glove-based system [5].

CONCLUSIONS
We have presented a bimanual gesture recognition system for
3D full-body motion tracking sensors, such as the Kinect.
Our system continuously recognizes arbitrarily defined ges-
ture templates in real-time on a standard laptop. Our evalua-
tion showed that the system recognizes one-handed and two-
handed gestures with 92.7–96.2% accuracy.

To enable comparisons against future gesture recognition al-
gorithms we have shared our collected data. Further, to help
designers, developers and researchers we have also released
the C# source code for our recognition algorithms under an
open source license. Data and code can be downloaded here:
http://pokristensson.com/kinect.html.
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