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Abstract 

Mobile devices gain increasing computational power and storage capabilities, and 
there are already mobile phones that can show movies, act as digital music players 
and offer full-scale web browsing. The bottleneck for information flow is however 
limited by the inefficient communication channel between the user and the small 
device. The small mobile phone form factor has proven to be surprisingly difficult to 
overcome and limited text entry capabilities are in effect crippling mobile devices’ 
use experience. The desktop keyboard is too large for mobile phones, and the keypad 
too limited. In recent years, advanced mobile phones have come equipped with touch-
screens that enable new text entry solutions. This dissertation explores how software 
keyboards on touch-screens can be improved to provide an efficient and practical text 
and command entry experience on mobile devices. The central hypothesis is that it is 
possible to combine three elements:  software keyboard, language redundancy and 
pattern recognition, and create new effective interfaces for text entry and control. 
These are collectively called “shape writing” interfaces. Words form shapes on the 
software keyboard layout. Users write words by articulating the shapes for words on 
the software keyboard. Two classes of shape writing interfaces are developed and 
analyzed: discrete and continuous shape writing. The former recognizes users’ pen or 
finger tapping motion as discrete patterns on the touch-screen. The latter recognizes 
users’ continuous motion patterns. Experimental results show that novice users can 
write text with an average entry rate of 25 wpm and an error rate of 1% after 35 
minutes of practice. An accelerated novice learning experiment shows that users can 
exactly copy a single well-practiced phrase with an average entry rate of 46.5 wpm, 
with individual phrase entry rate measurements up to 99 wpm. When used as a control 
interface, users can send commands to applications 1.6 times faster than using de-
facto standard linear pull-down menus. Visual command preview leads to 
significantly less errors and shorter gestures for unpracticed commands. Taken 
together, the quantitative results show that shape writing is among the fastest mobile 
interfaces for text entry and control, both initially and after practice, that are currently 
known. 
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Chapter 1 

Introduction 

The main contribution in this dissertation is the introduction, development, and 
analysis of shape writing as a text entry and control interface. 

Why do we need another text and control entry interface? The short answer is that 
non-disabled users do not need a new text interface for desktop computing. The 
desktop keyboard works just fine. However, when the form factor of computing 
devices is too small to host a desktop keyboard, or when the desktop keyboard and 
mouse setup does not apply (e.g. wall-sized displays), new effective interaction 
interfaces are required. 

Why do we need to write text on mobile devices? First, communication with family, 
friends, colleagues and others have evolved beyond speech and transcended into email 
and instant messaging communication. Second, one of the fundamental culture-
preserving activities our modern civilization relies on is the art of writing. Therefore 
effective text entry inventions play an important historical role. Orr [1987] captures 
the importance of fast text entry via shorthand in the following passage: “Thanks to 
stenography, no gap would exist, nothing would be lost. At last history would be both 
significant and faithful, loyal to its objects”.  

In the last centuries writing technology has undergone many changes throughout 
history. In the 19th century typewriting technology rapidly evolved to be practical and 
replaced pens and quills (to a great extent). In the 20th century the typewriter was 
replaced by the desktop computer and the keyboard. In the late 20th century and in the 
beginning of the 21st century the mobile phone evolution created demand for efficient 
mobile text entry methods. As the mobile phone becomes ubiquitous in society, users 
expect the power of the desktop in a handheld device. Mobile phones gain increasing 
computational power and storage capabilities and there are already mobile phones that 
can show movies, act as a digital music player and offer full-scale web browsing. The 
bottleneck for information flow is however limited by the inefficient communication 
channel between the user and the small device. The small mobile phone form factor 
has proven to be surprisingly difficult to overcome and limited text entry capabilities 
are in effect crippling mobile devices’ use experience. The systems in this dissertation 
are intended to offer effective alternatives. 
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1.1 Background 
This dissertation is in the field of human-computer interaction. However, human-
computer interaction is a broad field ranging from ethnography and interaction design 
to input device engineering and human performance modeling. My specific 
dissertation topic is within the subfield of input devices and text entry. 

Text entry research has a long and fascinating history. In fact, text entry research is 
much older than computer science, and certainly older than human-computer 
interaction. The first real text entry innovation was the alphabet and “longhand” 
writing. The letters in the alphabet have evolved tremendously and become 
increasingly efficient over time [Sacks, 2003]. The second innovation was founded on 
the realization that the alphabet was inefficient for rapid transcription and that some 
form of shorthand writing system was needed. The earliest such system was in use 
already 600-500 B.C. in ancient Greece. The Romans took over the tradition of 
shorthand writing and the most famous early shorthand system is probably notœ 
Tironianœ (the “Tironian notes”) invented by Marcus Tullius Tiro. Tiro’s shorthand 
system was much more effective than the Roman equivalent of long hand writing. 
Tiro’s system became widely used by secretaries in Rome and the number of 
shorthand “notes” grew to around 13,000 [Melin, 1927]. The writing tablet was 
covered with wax and a wooden pen, and the stylus was used to carve symbols into 
the wax layer. The opposite end of the stylus was used as an eraser [Melin, 1927]. 

Amazingly, Tiro’s notes were less efficient than our modern alphabet. Like all other 
shorthand systems Tiro’s notes also needed to be transcribed to proper script in order 
to be readable afterwards. However this transcription was difficult and tedious. The 
Byzantine emperor Justinian I even went so far as to ban shorthand usage because of 
the high risk of incorrectly transcribed notes [Martinville, 1849]. Here is an early 
example of the importance of not only consider entry rate – raw speed – in text 
writing systems. The error rate is of equal importance. 

Shorthand systems continued to evolve. The first true stenography system created in 
Europe was probably Nova Ars Notaria (“the new note art”), invented at the end of 
the 14th century, possibly by the monk John of Tilbury [Melin, 1927]. It had three new 
inventions. First, the individual letters in the alphabet were dramatically simplified to 
simple line marks [Melin, 1927]. In fact, almost the entire alphabet in Nova Ars 
Notaria is identical to the Unistrokes alphabet proposed by Goldberg and Richardson 
[1993] for handheld computers. Second, word stems were encoded as line marks for 
the first letter and complemented with dots and lines to distinguish different word 
stems from each other. In essence, this is an early example of text compression. Third, 
frequency analysis was used to find the most common word stems from the psalms in 
the Book of Psalms. These word stems were given unique encodings, while the rest 
were written as semi-shorthand where the consonants were usually written as 
traditional Latin letters [Melin, 1927]. Apparently three corner stones of text entry 
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research: 1) minimization of users’ articulations, 2) language modeling, and 3) 
optimization based on frequency analysis, were already explored in 13th century 
medieval Europe. 

Another breakthrough in text entry was the realization that words can be encoded 
based on sounds rather than how they are written in longhand. John Willis published a 
shorthand writing system in 1602 where letters that are silent and repeated letters are 
omitted, and only the dominating sound in a diphthong is written. The letters in the 
alphabet are also simplified into as simple line marks as possible to improve 
efficiency. Figure 1.1 shows how to write the word are in Willis’s system [Melin, 
1927]. Rules defined when vowels could be omitted or written as dots along an 
imaginary vertical axis orthogonal to the base line. Abbreviation rules were also 
employed. Furthermore, Willis attempted to define the shorthand symbols such that 
shorthand symbols that were frequently written in succession could be easily 
connected [Melin, 1927] (as in Figure 1.1). 

 

Figure 1.1. An example of Willis’s shorthand. Left: The stroke for a. 
Center: The stroke for r. Right: The stroke for are. 

The idea that words can be encoded based on sounds were adopted in the 
internationally best known shorthand systems, Pitman and Gregg shorthand, 
introduced in 1837 and 1888 respectively [Melin, 1927]. 

However, in the 19th century the typewriter was invented [Yamada, 1980]. Slowly the 
typewriter, and later the desktop computer became the dominating text entry method 
in practically all text composition tasks. With a desktop keyboard there is no need for 
transcription, and using a computer the text can be efficiently edited with a word 
processing application. 

In the late 20th century and the beginning of the 21st century mobile phones became 
increasingly popular and transcended into all-purpose handheld computing devices. 
The desktop keyboard is too large for mobile phones and the keypad too limited. In 
recent years advanced mobile phones have come equipped with touch-screens which 
enable new text entry solutions. This dissertation explores how software keyboards on 
touch-screens can be improved to provide an efficient and practical text entry 
experience on mobile devices. 
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1.2 Central Hypothesis and Research Questions 
The work in this dissertation is primarily based on three intertwined concepts: the 
software keyboard, language redundancy and pattern recognition. 

A software keyboard is a keyboard displayed to the user on a touch-sensitive screen. 
Software keyboards are usually operated with a finger or a pen. Software keyboards 
are common in mobile devices and ubiquitous in pen-based operating systems. 

Language redundancy is a feature of natural languages that is necessary for practical 
communication. Without some redundancy human-human communication would be 
almost impossible due to nose, ambiguities and other factors in verbal and non-verbal 
communication. A side-effect of language redundancy is that not all letter key 
combinations on a software keyboard form valid words in a language. There is an 
infinite number of letter key combinations, but only a finite set of words in any human 
language. Valid words can be captured in language model. A simple form of a 
language model is a lexicon. 

Pattern recognition is the process of recognizing regularities. In a software keyboard 
the user’s pen or finger contact positions form high resolution spatial patterns.  Words 
captured in a lexicon can also be represented as high resolution spatial patterns by 
mapping the letters in the words to the letter key positions on the software keyboard 
layout. Using pattern recognition the user’s motion pattern can be matched against a 
set of such word patterns. 

The central hypothesis of this dissertation is that it is possible to combine these three 
elements: software keyboard, language redundancy and pattern recognition, and 
create new effective interfaces for text entry and control. I call these collectively 
“shape writing” interfaces. 

Shape writing can be broken down into two fundamentally different input methods. 
With the first method the user writes a word by serially tapping the letter keys of the 
software keyboard with a pen or a finger. Due to the partitioning of the user’s 
articulation for a word into discrete steps, I call this input method “discrete shape 
writing”. With the second method the user articulates a trace that connects the 
intended letter keys without lifting the pen or finger. The user simply slides a finger or 
pen along a path resembling the geometric trace that connects all the letter keys of the 
intended word in sequence. The user’s articulation for a word is no longer partitioned 
by lifting up and pressing down a pen or finger. Rather the user’s entire continuous 
high-resolution articulation of the shape of a word is considered. I call this latter 
method “continuous shape writing”. 

If it is possible to devise discrete and continuous shape writing systems, a set of 
research questions emerge: 
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1. How are effective discrete and continuous shape writing systems engineered – 
from the user interface to the recognition algorithms? 

2. How effective are the discrete and continuous shape writing interfaces for text 
entry? 

3. Can shape writing also be used as a control interface, and if so, how effective 
is it? 

Research question 1 is answered in Chapters 2-4. Research question 2 is answered in 
Chapter 3 and Chapter 6. Research question 3 is answered in Chapter 5. 

In addition to answering these specific research questions it is important to frame the 
work in relation to previous research. Chapter 6 proposes a set of the 22 most 
important design dimensions of mobile text entry. In the process, Chapter 6 relates the 
text entry methods proposed in this dissertation to the large body of prior but most 
recent research on text entry. 

1.3 Definitions and Accuracy of Measurements 

1.3.1 Entry and Error Rate Definitions 

The text entry research community has not come to a consensus regarding entry and 
error rate measurements. In this dissertation entry rate and error rates will, unless 
otherwise noted, be defined as follows. 

Entry rate is measured in words per minute (wpm). A word is defined as five 
consecutive characters. A character is defined as any valid letter, number, 
punctuation, white space or control code that a user would want to enter to the 
computer system. For example, the letter a, the number 2, the punctuation symbol ; , 
the TAB and ENTER key presses are all characters. If entry rate is known in cps 
(characters per second) the entry rate in wpm is: 

 cpscps 12
5

60
=⎟

⎠
⎞

⎜
⎝
⎛  (1.1) 

Error rate is defined as the minimum number of Morgan [Morgan, 1970] editing 
operations required to transform the user’s written text into the user’s intended text, 
divided by the number of characters in the user’s intended text. Error rate is measured 
in percent. If the written text is identical to the intended text the error rate is 0%. If the 
written text is completely different from the intended text the error rate is 100%. 

1.3.2 Accuracy of Measurements 

The timing measurements from the experiments reported in this dissertation have 
been recorded with the help of operating system functions that uses the most accurate 
hardware timer available, and guarantees nanosecond precision and microsecond 
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accuracy. Individual timing measurements are reported in the unit appropriate to the 
task, typically milliseconds. 

1.4 Outline 
The chapters are outlined as follows. Chapter 2 introduces discrete shape writing – the 
simplest form of shape writing. Chapter 3 introduces the more advanced and 
promising form of shape writing that is called continuous shape writing. Chapter 4 
shows how to recognize continuous shape writing. Chapter 5 shows how continuous 
shape writing can be used to control operating system and application functions. 
Chapter 6 surveys related work in the mobile text entry field and identifies the design 
dimensions of mobile text entry. It ends with a comparison of a selection of 
exemplary mobile text entry methods from the perspective of these design 
dimensions. Chapter 7 presents conclusions, reflections and future work. 

This dissertation is intended to be read as a book – from start to finish. All chapters 
except Chapter 4 assume the reader is familiar with human-computer interaction. 
Chapter 4 assumes the reader is familiar with the basic pattern recognition literature. 
The contents in Chapter 4 are not necessary to understand the contents in the 
proceeding chapters. Chapter 6 can be understood without reading any of the 
preceding chapters, even though reading Chapter 2 and 3 is helpful. 



Chapter 2 

Discrete Shape Writing1

This chapter introduces the concept of discrete shape writing. The systems presented 
in this chapter are intended to complement software keyboards where the user inputs 
words by tapping on letter keys with a finger or a pen. 

2.1 Introduction  
A software keyboard is a touch-sensitive keyboard-display where the user selects 
letter keys by pressing them with for instance a stylus or a finger. In contrast to a 
physical desktop keyboard a software keyboard is typically operated with a single 
contact point, e.g. a finger or a pen. Another difference is the lack of tactile sensation 
of the key boundaries and the feedback of a key press. 

One weakness of existing software keyboards is the verbatim process – the user has to 
tap letter by letter with complete accuracy. It is well known that natural languages 
have a great deal of regularity and redundancy [Shannon, 1948]. From an information 
theory point of view, tapping all letters with 100% accuracy is over-specifying the 
amount of information needed. 

Goodman, Venolia, Steury and Parker [2002] proposes a method for software 
keyboard error correction that takes advantage of language regularities. Inspired by 
speech recognition technology, they calculate the probability of the intended key 
based on a character-level language model (letter sequence statistics) and a stylus 
tapping model derived from observations of users’ landing positions on the keys. 
Goodman et al. [2002] presents experimental results that indicate that their model 
reduced participants’ error rates compared to traditional uncorrected stylus typing 
[Goodman et al., 2002]. However it is not clear from their study to what degree the 
“tapping model” contributed to the error correction. 

2.2 Relaxing Fitts’ Law 
This chapter proposes an alternative solution. Fitts’ law [Fitts, 1954; MacKenzie, 
1991] can be used to model the average time T required successfully hit a key of size 

 over distance  on a software keyboard (e.g. [Getschow, Rosen and 
Goodenough-Trepagnier, 1986]): 
W D

 bIDaT +=  (2.1) 
                                                 
1 This chapter is a revised version of Kristensson and Zhai [2005]. 
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 ⎟
⎠
⎞

⎜
⎝
⎛ +

=
W

WDID 2log  (2.2) 

where  and b  are regression coefficients. For stylus typing on software keyboards 
these parameters have been estimated to 

a
83=a  and 127=b  ms [Zhai, Sue and 

Accot, 2002]. 

This means that relative tapping accuracy imposes a certain speed ceiling. If the user 
attempts to go beyond the ceiling, the landing points of the stylus will tend to fall 
outside of a targeted key, resulting in a letter different from the intended one. In other 
words, the user will tend to break the W  constraint. This adds to the user’s frustration 
since it takes additional time and effort to correct these errors. Accuracy constraints 
are particularly problematic for users with certain motor control disabilities and for 
expert users who push their text entry speed limit.  In the case of small mobile 
devices, the accuracy problem will be more acute. 

The goal is therefore to relax the accuracy requirement of precisely tapping on each 
letter, effectively widening the constraints of W . This is possible based on two 
observations: 

First, users’ vocabulary constrains the possible letter key combinations and this 
redundancy in the interface is exploited by a language model. A simple but effective 
language model is a lexicon, i.e. a list of words. 

Second, the landing point of the stylus on a software keyboard is a quantized high-
resolution variable recorded by the tablet or the touch screen, in contrast to a physical 
desktop keyboard that can only record isolated key positions. A series of stylus 
landing points implicitly form a high resolution sequential point pattern on the 
software keyboard. The center positions of all letter keys needed for inputting a word 
also form a pattern on the software keyboard. The distance between these two patterns 
is captured mathematically by a similarity function. The system finds the user’s 
intended word by computing the similarity function between the user’s typing 
sequence and the ideal center hit points of all words in the lexicon. If no close word is 
found, the user’s inputted letter keys are left unchanged. 

2.3 Linear Discrete Shape Writing 
The first correction system investigated uses a straight-forward matching method that 
is linear in relation to the number of stylus landing hit points. It compares the user’s 
stylus hit points with the center points of the letter keys for all words in a lexicon. 

2.3.1 Example 

In Figure 2.1 the user has tapped on the keys r, j and w on a QWERTY layout. Without 
any error correction rjw would be returned as the typed word. However, when looking 
at the hit points and comparing them with the center points corresponding to the letter 
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keys of all words in the lexicon the word the is found as a close match. Therefore the 
incorrect word rjw can be automatically corrected into the despite the fact that the 
user missed all the targeted keys. 

 

Figure 2.1. An example of linear discrete shape writing. The 
connected vertices indicate a user’s stylus hit points over the letters r, 
j and w in sequence. The best geometrically mapped word the is has 
been found in a lexicon with 57,392 U.S. English words. The word is 
shown as connected lines anchored at the center locations of the 
letter keys t, h and e. 

2.3.2 Similarity Function 

A simple template-driven approach is used that matches the geometrical traces of the 
user’s input and a word in the lexicon directly using an algorithm that has the 
following properties:  

1. Scalable to a lexicon that practically includes all words needed by a user.  

2. No training is required for the recognition algorithm. 

Next, let X  be an unknown pattern of  stylus hit points , and let Y  be a 

template pattern of  centers  of keys in the keyboard corresponding to letters 

comprising a word  in the lexicon, 

n }{ ix

n }{ iy

w { }letters with  worda is: nwww∈ . The average 
spatial similarity between the patterns can then be computed with the following 
algorithm: 

 ∑
=

−=
n

i
ii yx

n
YXD

1

1),( . (2.3) 

Equation 2.3 is perhaps most easily interpreted as a generalization of the Hamming 
distance [Hamming, 1950]. The Hamming distance measures how many characters 
are different in two strings of equal length. If two strings are identical, the Hamming 
distance is zero. Instead of measuring whether the characters at the i th position are 
different, the similarity distance function in Equation 2.3 measures the average spatial 
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(Euclidean) distance between two corresponding points at the th position in the 
patterns. 

i

To avoid matching unlikely words a threshold constant T  is imposed on each point-
to-point distance. If , the distance to the word is set to .  Among all 
candidate words a subset is created that consists of the words with a  value below 
the threshold T . These words are returned to the system as a ranked list. The system 
output is the word with the smallest  value. 

TYXD >),( ∞

D

D

The above matching method is simple and conservative. Specifically, if the user taps 
on all the correct keys of a word, no other word can be closer. Also, the above scheme 
is easy to implement and since there are few point comparisons, exhaustive (linear) 
search through the lexicon is fast. 

2.3.3 Delimiter 

The system requires the user to delimit each word. Among other possible solutions 
such as a special-purpose physical button on the user’s non-dominant hand, the linear 
correction system currently uses a set of delimiting characters. These characters are 
word delimiters in normal word processing, e.g. the tab-character, the space-character, 
semi-colon, etc. 

2.4 Experiment 2.1: Accelerated Performance 
Two experiments were conducted to assess the effectiveness of the linear correction 
system. The main concern was if the simple linear correction algorithm was enough to 
correct the vast majority of the errors users make in stylus typing. A second concern 
was to determine if the input speed was increased as a result of relaxing the Fitts’ law 
W constraint. 

2.4.1 Method 

2.4.1.1 Design 

The participants tapped on a software keyboard with a stylus. Two conditions were 
investigated: 

1. The software keyboard did not perform any automatic correction of the 
participants’ writing. This condition served as the baseline. 

2. The software keyboard automatically corrected participants’ writing when the 
SPACEBAR key was tapped. 

All participants typed using both conditions in this within-subject experiment. The 
order of the two conditions was balanced. 
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2.4.1.2 Participants 

14 paid participants were recruited from IBM Almaden Research Center. 12 were 
male and two were female. 

2.4.1.3 Apparatus 

Participants tapped a stylus on a software keyboard shown on a touch-sensitive 
screen. The screen resolution was set to 1024 × 768 pixels. The software keyboard 
dimensions were 460 × 220 pixels. The software keyboard used the standard QWERTY 
keyboard layout. Despite QWERTY being suboptimal for stylus typing [Getschow, 
Rosen and Goodenough-Trepagnier, 1986], the QWERTY layout was chosen because 1) 
it is the de-facto software keyboard layout, and 2) participants are familiar with the 
layout on the QWERTY keyboard, thus the amount of practice required from the 
participants is minimized for the experiment. 

2.4.1.4 Material 

The pangram “The quick brown fox jumps over the lazy dog” was used as the test 
sentence. This sentence is quite difficult to recognize correctly on the QWERTY layout 
since the word “dog” is close to “dig”, and “fox” is close to “fix”. The lexicon used 
by the recognizer consisted of 57,392 words. 

2.4.1.5 Procedure 

Two tasks were used: 

1. In the first task participants repeatedly wrote an individual word from the 
stimuli pangram. Participants were instructed to write as fast and accurately as 
possible. The interface did not allow participants to correct their mistakes. 

2. In the second task participants repeatedly wrote the entire stimuli pangram. To 
proceed, the pangram had to be completely and correctly copied for the 
experiment. Participants had to type correctly, or correct their errors by re-
positioning the text caret and use the BACKSPACE key on the software 
keyboard. 

Task 1 was repeated ten times and task 2 was repeated 12 times. 

2.4.2 Results 

2.4.2.1 Entry Rate 

The average entry rates of the last three sentences were analyzed for any difference 
between the baseline and the discrete shape writing software keyboard (Keyboard 
Type). Repeated measures variance analysis showed that the only significant factor 
was Keyboard Type × Order interaction (F1, 12 = 22.8, p < .001). Neither Order nor 
Keyboard Type alone was a significant factor in speed. This means that there was an 
asymmetrical skill transfer between the two types. As Poulton [1966] argued, when 
there is an asymmetrical skill transfer, the only way to find the unbiased result is to 
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restrict analysis to the data from the first condition presented – effectively turning the 
experiment to a between subject design, although the power of the experiment is 
much weakened. With such an approach, the difference between the two keyboard 
types was still insignificant, although the average speed of the discrete shape writing 
keyboard condition (29.5 wpm) was 24% higher than the baseline condition (23.7). 

2.4.2.2 Error 

Errors reported here are corrected errors. Recall that participants were not allowed to 
proceed until the entire sentence was written correctly. 

On average the participants made 8.7 errors in the verbatim condition and 5.3 in the 
relaxed condition. The difference was not statistically significant. 

2.5 Experiment 2.2: Saturated Learning 
Experiment 2.1 revealed no clear advantage of using discrete shape writing. This 
could be due to a number of reasons. One reason could be that participants’ learning 
of the text input method never saturated. To rule out this possibility a second 
experiment was set up that was explicitly designed to quickly saturate learning. 
Participants were asked to repeatedly write a single word five times in sequence, ten 
times. The task is artificial in the sense that the obtained results cannot be generalized 
to regular software keyboard typing on open text. However using the artificial 
experimental task it is possible to gain an understanding on if there is any speed 
performance difference easily achievable by users at all. 

2.5.1 Method 

2.5.1.1 Design 

Because an asymmetrical skill transfer effect was found in Experiment 2.1 this 
experiment was a between subjects experiment where participants were only exposed 
to a single condition. 

2.5.1.2 Participants 

26 unpaid volunteers from the Linköping University campus and IBM Almaden 
Research Center were recruited. 18 were male and 8 were female. Some of the 
participants had participated in Experiment 2.1. These were balanced among the two 
conditions. 

2.5.1.3 Apparatus 

Participants tapped a stylus on a software keyboard shown on either a touch-sensitive 
screen, or a CRT screen connected to an external Wacom tablet. The screen resolution 
was set to 1024 × 768 pixels on the touch-screen and 1600x1400 pixels on the CRT. 
The software keyboard used the standard QWERTY keyboard layout. The software 
keyboard dimensions were 460 × 220 pixels. 
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2.5.1.4 Material and Procedure 

Each participant entered the word “computation” 50 times in ten groups. Participants 
had to correct errors remaining in each group before proceeding. 

2.5.2 Pilot Performance 

A participant with a total of a few hours of experience (both conditions) participated 
in a pilot test. The participant typed the word “computation” 50 times (in ten groups) 
in both conditions as a pilot within-subject experiment. The user’s total number of 
errors was 18 with the baseline condition and 4 with the discrete shape writing 
condition, suggesting that the discrete shape writing condition had a positive effect.  
Counting the speed of the last 20 correctly typed words (the early words served as a 
buffer for the learning effect in this within subject test) the average was 50.1 wpm for 
the relaxed condition and 35.5 wpm for the baseline. The difference was statistically 
significant (F1,38 = 53, p < .0001, within the subject). This suggests that advanced 
users could potentially gain a significant speed performance advantage using the 
discrete shape writing technique. 

2.5.3 Results 

2.5.3.1 Entry Rate 

The participants’ grand mean entry rate was 23.2 wpm in the linear discrete shape 
writing condition and 22.6 wpm in the baseline condition. Analysis of variance 
showed that the difference was not statistically significant (F1, 25 = .038, p = .846). 
There were large individual differences in entry rate. It appears that some users could 
take advantage of the relaxation and exploit it more than others. 

2.5.3.2 Error 

The total numbers of errors that had to be corrected by the users in all ten sentences 
were 38 in the baseline condition and 22 in the linear discrete shape writing condition. 
The latter number does not include errors automatically corrected into the correct 
word by the linear correction system. For the linear discrete shape writing condition, 
an analysis was performed of the corrections on the individual words for the last three 
sentences of each subject. A total of 46 errors were found (including errors 
automatically corrected into the correct word). The number and percent of errors in 
each error category is shown in Table 2.1. 

Figure 2.1. The number and percent of errors in each error category. 

Error Category Errors % 
Errors automatically corrected 24 52% 
Errors corrected by the user before matcher 17 37% 
Deletions causing erroneous corrections 2 4.5% 
Missed SPACEBAR key 2 4.5% 
Other 1 2% 
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There were 24 instances where an error was auto-corrected to the correct word. Hence 
the error correction method captured most mistakes. The majority of the remaining 
errors were corrected by the user before auto-correction was applied. Among all the 
cases where automatic error correction took place the majority was successful: 24 
instances were corrected correctly, which amounts to a success rate of 83%. In two 
cases deletions (the user omitted a character) caused erroneous corrections (the letter 
key sequences compuation and computtion caused incorrect replacements into the 
word completion). In two other cases the SPACEBAR key was missed, causing 
concatenation of two words into one so the user had to move the text caret between 
the words and insert a space character afterwards. These two categories of errors were 
very detrimental to users’ perception of and performance of the linear discrete shape 
writing interface. It is plausible users perceived they could not really trust the system 
since it may give them implausible results when they (unconsciously) missed a key, 
particularly when the missed key was the SPACEBAR, which acted as the delimiter. It 
is likely this deficiency of the system caused users to take a more conservative 
approach and push less for speed. 

2.6 Elastic Discrete Shape Writing 
An 83% successful error correction rate is too low to be practical. Furthermore, two 
critical system deficiencies in the simple linear correction system were revealed after 
Experiment 2.1 and 2.2: 

1. The choice of delimiter is crucial. The SPACEBAR key is a bad delimiter since 
it is the most likely key being hit. Erroneous delimitations must be avoided 
since they will result in incorrect replacements by the system or no correction 
at all if the user fails to delimit two long words. 

2. The algorithm is too simplistic in that it can only handle patterns of the same 
length. Experiments 2.1 and 2.2 revealed that users made deletion errors 
(omission of an intended letter key) that the algorithm could not correct. 
Furthermore, users requested that the algorithm should handle insertion and 
transposition errors too. In general, the success rate of the algorithm must be 
very high, since erroneous corrections results in a higher cost for the user than 
if the algorithm did nothing at all. 

Based on an analysis of the empirical data gathered in Experiment 2.1 and 2.2, 
improving delimitation and handling patterns of different lengths would directly lead 
to a 97% error correction success rate. Clearly a generalization of the linear similarity 
function in Equation 2.3 is required that is more flexible in matching users’ stylus hit 
points against the word patterns. 
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As an example of the new algorithm’s capabilities consider Figure 2.2. In Figure 2.2 
the user has tapped on the keys r, j, n and w (hit points indicated as solid circles) on a 
zoomed-in part of the QWERTY layout. Without any error correction rjnw would be 
returned as the typed word. With the linear matcher no correction at all or an 
erroneous correction would be returned. The next system presented is capable of 
handle this situation and correct the input into the intended word the, despite the fact 
that the user missed all the targeted keys, and in addition had one extra spurious stylus 
tap. 

 

Figure 2.2. An example of error correction: the user tapped on the 
letter key sequence r-j-n-w but the intended letter key sequence t-h-e 
is returned. The best geometrically mapped word the has been found 
in a lexicon with 57,392 U.S. English words. The word is shown as 
connected lines anchored at the center locations of the letter keys t, h 
and e. 

2.6.1 Similarity Function 

Let X  denote an unknown pattern consisting of an ordered sequence of  stylus hit 
points {  } on a stylus keyboard, and let Y  denote a template pattern consisting of 

 points { } that are the centers of the corresponding keys for any word  

. 

n

ix

m jy

{ }lexicon in the  worda is:www∈

Define  as the minimum stretching cost needed to transform ),( YXD X  into Y . Let 
 be the minimum stretching cost of matching  against 

.  for the subsequences  against  can be computed using 

a recurrent equation of similar form as the traditional edit-distance between two 
strings over a finite alphabet [Wang and Pavlidis, 2004]. However this form is 
difficult to use for elastic discrete shape writing since the formulation in [Wang and 
Pavlidis, 2004] involves a constant penalty in inserting or ignoring a single point. 
Intuitively the cost of inserting or ignoring a point should depend on the distance 
between the points matched. Therefore the recurrence equation given by Wang and 

),(),( mnKYXD = nxx K1

myy K1 ),( jiK ixx K1 jyy K1
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Pavlidis [2004] is modified by multiplying the constant penalty τ  for inserting or 
ignoring a point with the actual distance between the points compared: 
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where , 0)0,0( =K ),( ji yxδ  is the stretching cost  to , and ix jy τ  is an empirically 

determined parameter weighting the cost of either ignoring or inserting a single point. 
The parameter value 0.2=τ is currently used. It was discovered by experimentation 
with the implemented system. 

The distance function δ  measures the spatial distance between the points. To avoid 
extreme stretching of a single point it is defined as: 
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where r  is the maximum distance a point can be stretched. Equation 2.5 is important 
because it acts as a decision function on whether to automatically correct the stylus 
tap pattern into an ideal word pattern in the lexicon or not. If the parameter r  is too 
low automatic correction would never happen. 

 It is well known that the computation of  for matching ),( mnK X  against Y  in 
Equation 2.4 can be solved efficiently using dynamic programming in  time 
[Levenshtein, 1965; Wagner and Fischer, 1974]. 

)(nmO

Equation 2.4 is not normalized with respect to the patterns’ lengths and therefore 
precludes direct comparisons between patterns of varying lengths. Unfortunately 
normalization of Equation 2.4 is shown to be non-trivial [Marzal and Vidal, 1993]. 
Fortunately, a pseudo-normalized measure that is sometimes used in dynamic time 
warping in speech recognition [Rabiner and Juang, 1993] can be directly adapted: 

 
mn
YXDYXDN +

=
),(),(  (2.6) 

The best matching word is the word whose pattern has the lowest normalized 
stretching cost  against the user’s tapping pattern. ND

The algorithm presented can be seen as a generalization of a minimum edit-distance 
algorithm where the character equivalence function is replaced with the Euclidean 
distance between two points in a Cartesian coordinate system. In comparison, the 
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character equivalence function in string matching is defined to return 0 if the 
characters match and 1 otherwise. 

Like the algorithm in Equation 2.3 the elastic discrete shape writing algorithm is 
template-based. Although conceivably a classic data-driven approach [Duda, Hart and 
Stork, 2001] could be used, the elastic discrete shape writing method has the 
following advantages: 

1. Simple, elegant and straight-forward to implement and analyze. A 
generalization of the string edit-distance into a spatial edit-distance is 
conceptually intuitive for the task. 

2. Scalable to a lexicon that practically includes all words needed by a user. 

3. Can match sequences of different lengths and handle transposition errors. 

4. No training of the classifier is necessary. 

The last advantage (4) is crucial in practice. An algorithm based on training data, e.g. 
a linear machine [Duda and Hart, 1973], would require data from users’ repeatedly 
stylus typing of all the words in the lexicon. Clearly, for a lexicon containing 10,000 – 
100,000 words such an approach would be inflexible and cost prohibitive.  

2.6.2 Indexing 

Unlike the linear discrete shape writing algorithm, the algorithm presented in 
Equation 2.4 has quadratic complexity. To avoid a resource-intensive exhaustive 
search of a large (in the order of 50,000-100,000 words) lexicon the system uses a 
novel indexing technique that considerably narrows down the search space. 

Straight-forward indexing methods are difficult to use since the modification of the 
constant penalty τ  into a non-constant function in Equation 2.4 has the side-effect 
that the similarity distance function  violates the triangle inequality and is no longer 
a metric [Wang and Pavlidis, 2004]. As a result, search methods for metric spaces 
[Chávez, Navarro, Baeza-Yates and Marroquín, 2001] cannot be used to narrow down 
the set of likely candidates. 

D

Instead the indexing strategy is based on the observation that since Equation 2.5 
constrains corresponding point-to-point distances between the unknown pattern and 
the template pattern to be shorter than r , the template patterns whose corresponding 
first and last point do not meet this constraint can be immediately eliminated without 
any loss in accuracy. If r  is sufficiently conservative, e.g. 1.5 times the radius of a 
letter key on the keyboard, this observation directly leads to an effective indexing 
strategy. 

Construct an ordered k-ary tree data structure of height 2 where k is the number of 
letter keys on the keyboard layout. Each node at index i  at depth  represents a d
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circular cluster  where the i th key center is the cluster center, and idC r  is the radius 

of the cluster. At index , i ki ≤≤1 ,  represents a start position cluster and  

represents an end position cluster. A pattern Y  of length  is indexed by a pointer in 
a cluster  at depth 2 iff , 

1iC 2iC

m

2jC 11 iCy ∈ 2jm Cy ∈  and  is a child node of . Set 

membership is used to denote that a point is contained in the circular cluster. When 
querying the index with an unknown pattern 

2jC 1iC

X , the system walks the tree in breadth-
first order and collects the set of all patterns in the lexicon indexed at the same depth 
2 clusters as X . This set is then searched exhaustively.  

If r  is too large or all words in the lexicon have patterns mapped to the same start and 
end point clusters, this procedure would still result in an exhaustive search. In practice 
the character frequencies are distributed unevenly but with enough spread for this 
indexing procedure to significantly reduce an exhaustive search. For example, the 
current lexicon in the system contains 57,392 U.S. English words and the largest 
possible set that needs to be searched exhaustively on a QWERTY layout is about 4,000 
words when  in letter key radius units. 5.1=r

2.6.3 Threshold 

The classifier returns a subset consisting of the words in the lexicon with similarity 
distance  to the user’s tapping pattern below a set threshold ND T . These word 

candidates are returned to the system as a ranked list. The system outputs the word 
with the shortest  distance. ND

The threshold T  is fixed in the implemented system and set to krT 0.1= , where  is 

the radius of a key. In a future system the threshold could be changed from a constant 
to function dependant on for instance the distribution of point-to-point distances, or 
the movement dynamics of the user’s sampled stylus typing pattern. 

kr

2.6.4 Lexicon 

The lexicon used can be constructed with various methods. It can be a preloaded 
standard dictionary, or a list of words extracted from the user’s previously written 
documents, including emails and articles, or words added by the user to the list, or a 
combination of all. Currently the system uses a lexicon containing about 57,392 
words. 

Indexing makes large lexicons computationally feasible for the recognizer. However, 
it is important that the lexicon is just large enough (but not larger than necessary) to 
include all words a particular user needs so the probability of unwanted corrections is 
minimized and the capacity of correct mapping for “sloppy” stylus typing is 
maximized. 
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2.6.5 Delimiter 

As shown in Experiment 2.1 and 2.2, the SPACEBAR key proved problematic as a 
delimiter since the risk of accidentally mistyping the SPACEBAR key is just as likely as 
mistyping any other key. On the QWERTY keyboard layout the SPACEBAR key is 
enlarged, hence the SPACEBAR key is in fact the most likely key being mistyped. A 
solution that proved useful is to instead introduce a left-to-right pen-gesture action 
that is distinct from typing. This solution is similar in spirit to the optional spacebar 
pen-gesture found in many software keyboard implementations, e.g. [Hashimoto and 
Togasi, 1995]. 

2.7 Experiment 3: “Expert” Entry Rate – A Pilot Study 
Proficiency in a text entry system such as discrete shape writing is a function of 
practice. The closed-loop action of typing on a regular software keyboard is limited 
by the human motor control system and can be reliably modeled using a character-
level bigram model and Fitts’ law [Fitts, 1954]. Since discrete shape writing relaxes 
or “breaks” Fitts’ law we cannot, as of today, model discrete shape writing expert 
performance using any known human performance law. Also note that the recognition 
precision of discrete shape writing varies with the size and contents of the lexicon. 

Instead of performing a theoretical modeling of the performance of discrete shape 
writing, expert performance was simulated by letting two proficient users repeatedly 
write selected sentences correctly (errors were not allowed). The test was carried out 
on a Tablet PC with a discrete shape writing system using the QWERTY keyboard 
layout and a lexicon containing 57,392 words. The results are shown in Table 2.2. 
Note that these numbers are “record” entry rates that do not reveal the true average 
and expert typing performance of discrete shape writing, and should only be 
considered a demonstration of the potential of the technique in “breaking” Fitts’ law 
in stylus typing. Also note that the system in the experiment used a very large lexicon 
as a stress test of the technique and the implemented system. A smaller “optimized” 
lexicon would increase the probability of desired automatic correction. As a reference, 
the theoretical average expert typing speed on a QWERTY software keyboard has been 
estimated to around 34.2 wpm [Zhai, Sue and Accot, 2002]. 

Table 2.2. Pilot entry rate estimates for the two participants that were 
“expert” users in elastic discrete shape writing. 

Phrase P1 P2 
the quick brown fox jumps over the lazy dog 46.3 37.7 

ask not what the country can do for you 45.4 40.1 
intelligent user interfaces 51.3 51.8 
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2.8 User Interface 
Apart from the distinct left-to-right sliding delimitation pen-gesture to signal end of 
word, the discrete shape writing interface is in principle indistinguishable from a 
standard software keyboard. This is an asset in one regard since users do not need to 
learn a completely new text entry method. Therefore they can directly transfer their 
stylus typing skills when using the new interface. It is also a liability because although 
discrete shape writing masquerades as a standard software keyboard, the recognizer 
component adds an extra layer of complexity to the user. If the recognizer 
misrecognizes the user’s intended action, the incorrect automatic change of the user’s 
input into an unintended word in the lexicon can appear perplexing. To mitigate such 
issues three new user interface components were considered for discrete shape 
writing. 

2.8.1 Tapping Feedback 

First, for each key tapped the corresponding character is outputted, just as in a normal 
software keyboard. To help users get an understanding of the geometrical pattern 
approach the system can display the hit points of the stylus taps (slowly fading away 
over time) as a way to “hint” to the user that the proximity information is taken into 
account. Whether or not this is a good idea remains to be empirically validated. As a 
general point, “clean” text entry user interfaces that reduce users’ cognitive and visual 
information processing overhead are generally preferred; suggesting that stylus tap 
visualization should be activated sparsely or perhaps not at all during normal text 
writing. However, stylus tap visualization can be helpful for novice users as part of an 
initial practice or during a tutorial. 

2.8.2 Automatic Correction Feedback 

Second, since the system replaces the user’s input with something else, it is important 
to inform novice users about the replacements. This is achieved by drawing the word 
the system inserted in place of an automatically corrected word with a distinct 
background color (Figure 2.3). 

 

Figure 2.3. Example of correction indication. 

2.8.3 Error Correction Interface 

Third, since the matching algorithm outputs normalized scores it is possible to collect 
a ranked list of the best matches (list of alternative words). By pressing on a corrected 
word with the stylus the user brings up a selection widget allowing direct access to the 
list of alternative words. Among the possible solutions a pie menu was explored 
(Figure 2.4). The best match is shown at the 270˚ position in the pie and the best 
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alternative words follow counter clock-wise. An advantage when using a pie menu 
instead of a traditional linear pull-down menu is that the user can correct a word by 
simply selecting the incorrect word and flick the pen in the direction of the desired 
alternative word [Callahan, Hopkins, Weiser and Shneiderman, 1988]. 

 

Figure 2.4. A pie menu reveals the word candidates for the 
automatically corrected high-lighted word in Figure 2.3. 

2.9 Implementation 
Both the linear and elastic discrete shape writing systems were written in Java version 
1.4. The elastic discrete shape writing system has been tested on Sun Solaris, Linux 
and Windows XP Tablet PC Edition. On a 1 GHz Tablet PC the average latency is 40 
ms with a lexicon consisting of 57,392 words. The matching process is fast enough 
that automatic correction is perceived as real-time to the user. 

2.10 Discussion and Conclusions 
Informal testing indicates that one can type faster with less effort with elastic discrete 
shape writing than on a regular software keyboard. This can be explained by the 
reduced need to correct frequent errors, and the more relaxed requirement for 
precision tapping. It is important to choose an appropriate correction threshold and a 
suitable lexicon, so that neither too many errors are left uncorrected nor too many 
input strings are changed into unintended words. In general in the experiments it was 
observed that users were more unforgiving when receiving unintended words than 
appreciating correct error corrections. It is therefore necessary to be conservative. 
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This chapter has explored using a geometric pattern recognition approach to relax the 
precision requirements in stylus typing. The first implementation of this approach, the 
linear correction system, was tested in two experiments. The data and experiences 
from these experiments guided the development of the elastic discrete shape writing 
system. Although the latter system has not been evaluated as formally as the first 
linear discrete shape writing system, informal testing indicates that the elastic discrete 
shape writing performs much better. The two key weaknesses observed with the linear 
discrete shape writing system were solved. First, the delimitation problem caused by 
missing the SPACEBAR key found in Experiment 21 is eliminated with the use of a 
pen-gesture as the word delimiter. Second, due to the introduction of elasticity in the 
matching algorithm, the discrete shape writing system now returns correct results 
even when a required key tap was missed or an extra tap accidentally added, as long 
as the overall shape of the input pattern matches the desired target word better than 
any other alternative. As a result of these improvements, a user can trust the system 
much more and be more comfortable in taking advantage of the precision relaxation. 

The use of a pen-gesture also makes it possible for users to opt out from taking 
advantage of automatic correction. If the user presses the SPACEBAR key or any other 
delimitation character, the system’s buffer is flushed but no correction takes place. 
Users are free to choose if and how much the automatic correction system should 
interfere with their typing. 

The discrete shape writing system is essentially enabling users to take advantage of 
the regularities in the languages in a novel way – relaxing precision constraints by 
pattern matching, hence “breaking” Fitts’ law. Prior techniques have either relied on 
users consciously “compressing” the input [Shieber and Baker, 2003; Shieber and 
Nelken, 2007] or using prediction (e.g. Masui [1998]) that demands cognitive and 
visual reaction time. In contrast, a discrete shape writing interface does not require a 
user to learn a compression technique or hope that the system predicts the desired 
input. An expert discrete shape writing user simply taps the word as quickly as 
possible and relies on the redundancy in the language to make sure that word patterns 
are sufficiently separated on the software keyboard. 

Critical improvements can be made in primarily two domains. First, in Experiment 
2.1 it was discovered that users corrected the input before the system in 37% of the 
cases. An extension of the system is to make it proactive and recognize the user’s 
input before delimitation. Such a feature signals to the user that the system is 
automatically correcting the input right away. On the other hand, this feedback may 
be confusing because of the lower quality of data for the algorithm (guessing based on 
substrings rather than whole words). Second, an improvement is to use higher-level 
language information (e.g. word n-gram models) about the text the user is writing to 
constrain the lexicon dynamically. By dynamically constraining the lexicon the 
probability increases that the system can perform an accurate automatic correction. 
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The discrete shape writing interface works with any keyboard layout, either QWERTY 
or an optimized layout. The discrete shape writing technique can also be transplanted 
to other text entry interface such as eye-typing. The discrete shape writing interface is 
a practical and easy-to-implement solution to improve the verbatim and error-prone 
input method of today’s stylus keyboards; requiring little, if any, training from the 
end-user’s part. 

2.10.1 Data-Driven vs. Template-Driven Automatic Corrections 

In comparison to Goodman et al. [2002] one limitation with discrete shape writing in 
its current form is that users do not get any feedback on corrections until after they 
have finished writing the words. In the system presented by Goodman et al. [2002] 
automatic corrections are made after each single character is pressed. 

However, the advantages of discrete shape writing in comparison to a data-driven 
statistical letter sequence approach such as Goodman et al. [2002] are numerous. The 
discrete shape writing system’s matching effect works on the word level, and the 
words explicitly belong to an individual user’s lexicon. New words can be added and 
removed in a customized dictionary; different languages such as Swedish, German, 
Chinese pinyin, etc. can be mixed without affecting the performance or behavior of 
the system. Depending on the size of the lexicon, the error tolerance of the discrete 
shape writing interface can be adjusted, either by the user or automatically by the 
system. Note that if the user aims at the correct letters in a word, the resulting shape 
will tend to approximate the ideal word pattern and be correctly matched. A user’s 
input pattern can still be successfully matched to the intended word even if some of 
the hit points are far away from the correct keys, as long as the word patterns in the 
lexicon are sufficiently separated.  Since the system uses the geometrical tapping 
trace, some amazing corrections can be achieved. It is for example possible to correct 
the user’s input even if the user missed all the intended letter keys (see Figure 2.2 and 
Figure 2.3), something that is virtually impossible to replicate with another 
technological approach without taking the spatial hit point information of entire words 
into account. Furthermore, the intuitive spatial interpretation of the matching method 
can enable expert users to develop a strategy on how to take advantage of the error 
correction scheme. 

2.10.2 Summary 

This chapter presented the design evolution of discrete shape writing. Experiment 2.1 
and 2.2 show that there is no clear advantage of linear discrete shape writing in 
relation to a traditional software keyboard. The much improved elastic discrete shape 
writing system has as of yet not been empirically validated in a larger controlled 
study, although based on analysis of the empirical data collected in Experiment 2.1 
the improved system would automatically correct 97% of the participants’ errors. 
“Expert” estimates indicate that it is possible that users can reach over 40 wpm in 
entry rate with the new system. 
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Qualitatively the primary limiting factor of software keyboard typing is motor 
inefficiency of repeatedly pressing and releasing a pen in order to articulate a single 
word. While discrete shape writing might be an improvement, it is not a big leap 
forward. The next chapter explores an alternative approach where users do not have to 
lift up and press down the pen for every letter written. 

 



Chapter 3 

Continuous Shape Writing1

The previous chapter introduced discrete shape writing, a scheme in which users’ 
geometric discrete tap patterns are matched against a set of words’ ideal geometric 
mapping onto the software keyboard layout. This chapter presents an alternative 
continuous scheme in which the users perform continuous pen movements on the 
touch-screen surface. 

3.1 Introduction 
To write a word in continuous shape writing, rather than tapping the word serially as 
in discrete shape writing presented in Chapter 2, the user slides the pen from letter key 
to letter key in the word (Figure 3.1). 

 

Figure 3.1. An example of continuous shape writing. The user is 
writing the word the. The pen trace begins at the letter key t and 
continues through h towards e. When the user lifts up the pen the 
word the is recognized as the intended word. 

                                                 
1 This chapter is partly based on work previously published in Kristensson [2002], Zhai and 
Kristensson [2003], Kristensson and Zhai [2004], Kristensson [2004], Kristensson [2005], Kristensson 
and Zhai [2005], Zhai and Kristensson [2007], Kristensson and Zhai [2007a] and Kristensson and Zhai 
[2007b]. However some of my thinking has changed since these prior publications. All text, figures and 
tables used in this chapter are original work. The discussions and results in the following sections have 
not been previously published: 3.3 Shape Writing on Mobile Phones; 3.5 Localization; 3.7 Experiment 
3.2: Immediate Efficacy; and 3.8 Experiment 3.3: Accelerated Novice Learning. 
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3.1.1 Recognition 

The intended word can be recognized by a pattern recognizer, even though many 
irrelevant letters are crossed. There are two primary reasons why this approach works. 
First, language redundancy eliminates many improbable letter key combinations. 
Second, words on a software keyboard form shape representations. Words can be 
viewed as a sequence of letter key coordinates in a keyboard topology. 

3.1.1.1 Language Redundancy 

Not all letter key combinations form valid words in a language. There is an infinite 
number of letter key combinations, but only a finite set of words in any human 
language. Further, users only write a small subset of the set of total words in the 
user’s language. The subset of words the user is writing is called the active 
vocabulary. It is typically much smaller than the subset of words the user understands, 
the passive vocabulary.  The valid words can be captured in a lexicon.  Typically a 
subset of words consisting of most words in a typical users’ active and passive 
vocabularies are used. In the continuous shape writing software systems described in 
this dissertation, lexicons containing over 55,000 words are used. 

3.1.1.2 Words Represented as Spatial Traces 

Words in a lexicon can be mapped to spatial traces along the letter keys of the word 
on a software keyboard. In Figure 3.2 the words the and while are mapped onto a 
software keyboard layout. 

      

Figure 3.2. The words the and while mapped onto a QWERTY software 
keyboard layout. 

Internally a pattern recognizer stores a set of word shape representations. When the 
user is pen-gesturing a word shape the pattern recognizer compares the pen trace 
against all the internal word shape representations and finds the set of word shapes 
that most closely matches the user’s pen trace. The best matching word in this set is 
displayed to the user as the matching word. Two effective procedures for performing 
this recognition are presented in Chapter 4. 

3.1.2 Movement Efficiency and Chunking 

A problem with discrete shape writing and traditional software keyboard typing is 
movement inefficiency. Users are required to repeatedly move, lift up and press down 
the pen or finger input device on the software keyboard surface. Anecdotal evidence 
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from centuries of stenography research has pointed out the impeding effect repeated 
pen lifts have on performance [Melin, 1927; Melin, 1929]. 

From a motor control point-of-view, users’ discrete pointing actions partition the 
process of writing a word into several closed-loop planning and execution sub-units 
that can be modeled by Fitts’ law [Fitts, 1954] or first-order lag [Jagacinski and Flach, 
2003]. This fact was recognized by Montgomery [1982] when he proposed the touch-
sensitive wipe-activated keyboard. In the wipe-activated keyboard some of the 
common words in U.S. English (for example the) are adjacent and thus enables the 
user to slide the finger over certain letter key combinations rather than serially tapping 
them. 

Even though discrete shape writing relaxes the target width constraint, the Fitts’ law 
model of pointing still imposes a hard limit on performance. In contrast, the 
continuous pen trajectory movement for continuous shape writing can be “chunked” 
and learned and executed from motor memory as a single open-loop action. An expert 
user knows the spatial topology of the keys in the software keyboard and can initiate a 
motion in the proximity of the keys. 

Buxton [1986] argues that gestural interfaces in general should chunk atomic user 
interface actions into meaningful actions. Novice and expert users alike have a 
greater, more meaningful and expressive user interface language if primitive actions 
are abstracted into compound actions with semantic intent. Transforming a pen-tap 
sequence into a single pen-gesture is a step towards that vision. For example, the letter 
key taps t, h and e do not have any intrinsic meaning individually. The word the on 
the other hand is a meaningful unit. 

In relation to traditional pen-based input techniques such as handwriting, hand 
printing and specialized pen-gesture alphabets (e.g. Unistrokes [Goldberg and 
Richardson, 1993]) continuous shape writing is more efficient because pen-gestures 
result in entire words. 

3.1.3 Continuous Learning 

A central idea behind continuous shape writing is that the initial novice user’s 
visually-guided action gradually transforms into fast open-loop muscle-memory 
recall. 

In the novice phase the user traces words from letter key to letter key. Over time 
motor memory builds up in the user’s brain for the frequently articulated words. Once 
a word is practiced enough, the user can recall the articulation from memory 
automatically (see Figure 3.3). An individual user is thus always in a continuum 
between complete novice and complete expert. 
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Figure 3.3. The learning loop for an individual word using continuous 
shape writing. 

Fitts [1964] introduces three different stages of skilled performance. The first is a 
cognitive stage where users consciously learn the skill. At this stage the user devotes a 
lot of attention towards learning. The second stage is a step towards automation of the 
skill. Fitts [1964] calls it the associative stage. In this stage the learner tries different 
strategies to find those that contribute to success or failure. The last stage is the 
autonomous stage where the skill is performed with little or no conscious thought. 
Similar theories have been proposed later in different contexts and with different 
terminologies, for example the knowledge-rule-skill based performance theory 
[Rasmussen, 1983]. 

The learning process for continuous shape writing can be viewed through the glasses 
of the stage theory. In the cognitive stage the user needs to devote considerable 
attention towards spelling out the intended word and locating the relevant keys on the 
keyboard. In the associate stage the user tries out the optimal pen-trajectory strategy 
for the word. Some words are more easily articulated and / or recognizable for the 
system than others. This process is heavily affected by feedback from the system in 
form of misrecognitions. At this stage the user eventually knows the limitations of the 
system for a specific word and can reproduce a pen-gesture articulation that is reliably 
recognized. Over time this articulation fixates in the user’s motor memory. At this 
point, the autonomous stage is reached. 

In general motor skills are learned by repetition [Rosenbaum, 1990; Willingham, 
1998]. A common example of muscle memory is keypad codes. Many people do not 
remember the keypad code by a number sequence. Instead a spatial pattern is recalled 
when the code needs to be entered. Many keypad codes can be stored without conflict 
because their meaning is different. One keypad code is used for bank withdrawals, 
another is used to access the office, etc. 
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An open question is how much effort a user needs to invest to learn the pen-gestures. 
There is evidence that repetitive training of spatial actions by adults unconsciously 
consolidates from a short-lived representation in the brain into a long-term established 
form [Shadmehr and Holcomb, 1997]. This process does not stop when practice ends, 
rather it unconsciously continues in the human brain many hours after practice. Sleep 
is also assumed to be an important factor for efficient consolidation of motor skill 
[Shadmehr and Wise, 2006]. Strong long-term motor memory consolidation appears 
to at least in part be an unconscious process. Therefore it may not be necessary for a 
user to write the same words many times over in sequence once the user knows how 
to reliably reproduce the word. Experiment 3.1 later in this chapter shows that users 
typically learn to recall (without a software keyboard as a visual reference) 15 pen-
gesture word shapes per 45 minute training session. 

3.1.3.1 Relation to Marking Menus 

An interface with a similar skill transition path is marking menus [Kurtenbach, Sellen 
and Buxton, 1993]. Marking menus are graphical pie menus where users make 
selections by moving the pen in angular directions. Pie menus are hierarchical menu 
structures. The selection of a pie menu “slice” can trigger the display of an additional 
nested pie menu, and so on. 

When the user makes a selection in the pie menu the user is implicitly articulating a 
pen-gesture pattern. Initially the user does not know the contents within the pie menu 
and has to visually explore the alternatives, similar to menu selections in traditional 
hierarchical linear pull-down menus. When a particular menu selection is repeated, 
the movement pattern of the pen-gesture required to reach the selection becomes 
reinforced in the user’s muscle memory. Given enough practice, the user can quickly 
articulate the pen-gesture pattern directly from muscle memory rather than visually 
navigating the pie menu structure. 

To create an incentive for users to articulate pen-gestures to reach the pie menu items 
rather than resorting to visual navigation Kurtenbach, Sellen and Buxton [1993] 
introduced a delay for the graphical pie menu to pop-up. When users press down the 
pen the pie menu is not revealed until after a time delay. If the user knows the pen-
gesture the user can directly articulate the pen-gesture for the menu selection. The 
pen-gesture is recognized by an angular pattern recognizer. Otherwise, the user waits 
until the graphical pie menu is revealed and navigates the pie menu to the desired 
menu item. 

In marking menus there is a distinction between navigation and specification. In the 
first case the user is performing a navigation task when traversing a pie menu 
structure. In the second case the user is performing a pen-gesture specification. In the 
latter case the underlying structure is flat. For example, if the pie menu contains 40 
menu items, the pattern recognizer must be able to recognize 40 different pen-
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gestures. From the pattern recognizer’s point-of-view there is no hierarchy among the 
pen-gestures. 

In comparison, continuous shape writing does not feature a delay and the transition 
from novice to expert is not binary (menu vs. no menu) but in a continuum.  There is a 
contrast to the word entry versus menu selection task that is important to emphasize. 
When the user initially performs menu selection the user must navigate a structure. 
The desired menu item can be in many places and on many levels. In fact the desired 
menu item may be completely absent in the menu structure.  In contrast, when writing 
a word the user generally knows the word exists in the system. Therefore there is no 
need for navigation via any popup menu structure or similar mechanism. Instead, in 
continuous shape writing the software keyboard serves as a visual map for the 
specification task. The user articulates a pen-gesture pattern by moving from letter 
key to letter key in the intended word. Continuous shape writing aids users in the 
specification task by presenting a visual map of the keyboard to the user. In contrast, 
marking menus do not guide users in the specification task: when the marking menu is 
not revealed the display is blank. Marking menus only aid the user in the navigation 
task. 

3.1.4 Disambiguating Pen-Gestures and Pen Taps 

Note that continuous shape writing does not preclude the use of a traditional software 
keyboard to type in Internet bank codes and other sensitive information for example. 
However, some care must be taken to effectively and reliably disambiguate users’ 
pen-gestures from pen taps. The problem is not trivial because some words such as an 
on the QWERTY layout are comprised of adjacent letter keys. Further, touch-screens 
and tablets tend to return unreliable measures for pen taps, often exaggerating the 
distance traveled by the pen from pen-down to pen-up. Thus a simple pen-trace 
length-based threshold does not work. Fortunately, an effective method to distinguish 
pen taps from pen-gestures is to find the number of keys the user’s pen trace 
intersects. If this number is larger than one, the input can be regarded as a pen-
gesture. Empirical measurements of user’s tapping patterns have shown that users 
tend to tap closely to the center of a key [Goodman, Venolia, Steury and Parker, 2002; 
Zhai, Sue and Accot, 2002]. In conjunction with the principle that all letters crossed 
can potentially be a continuous shape writing pen-gesture, the above procedure 
maximizes the probability that an intended tap or pen-gesture is interpreted correctly. 

3.2 User Interface 
Shape writing is built on a foundation of pattern recognition of users’ input. As such, 
there is an added complexity layer between the user and the system. Since pattern 
recognition can result in misrecognitions the added complexity layer is another 
“failure point” of the interactive system that does not exist in a traditional software 
keyboard. To alleviate the issue effective user interfaces are required that 
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simultaneously prevent errors and minimize user effort to correct them when they do 
happen. 

3.2.1 Keyboard Design 

The most obvious, and in fact to some extent critical, user interface for shape writing 
is the design of the software keyboard. 

The original QWERTY typewriter layout has been adopted in desktop computer 
keyboards since the first personal computers. As a result a majority of computer users 
are proficient in, or at least familiar with, the QWERTY layout. Therefore it is natural 
that the de-facto layout used for commercial software keyboards is also QWERTY. 

However, given the advantage of optimized software keyboard layouts in stylus 
typing (e.g. [Getschow, Rosen, Goodenough-Trepagnier, 1986] and others) the initial 
keyboard layout design in the first shape writing prototype used the optimized 
ATOMIK [Zhai, Smith and Hunter, 2002] keyboard layout (Figure 3.4). Figure 3.5 and 
Figure 3.6 show the first practical version of shape writing that can use both the 
ATOMIK and QWERTY software keyboard layouts. 

 

Figure 3.4. The first shape writing implementation. The user’s input in 
the figure will be recognized as that. (The abbreviation HSK (Hybrid 
Shorthand Keyboard) was an early project name abandoned in April 
2002.) 
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Figure 3.5. The first practical implementation of shape writing. It was 
released to the public on the IBM alphaWorks emerging technologies 
website in 2004. The user’s input in the figure will be recognized as 
the word that. The keyboard layout is the hexagonal ATOMIK layout. 

 

Figure 3.6. Shape writing using the QWERTY keyboard layout. The 
user’s input in the figure will be recognized as the word that. 

Figure 3.7 shows an improved ATOMIK keyboard layout design. Two new sets of 
keyboard key designs are introduced. The first new key is the quad-key that contains 
four different keys. The second new key is the split-key that contains two different 
keys split along the diagonal. The new keys are introduced to avoid the user having to 
initially press SHIFT to reach common keys. The simple motivation is that one Fitts’ 
law task with a smaller target width is faster than two Fitts’ law tasks with larger 
target widths (within limits) [Fitts, 1954]. Since Fitts’ law predicts slower response 
times on smaller target widths less frequently used letter keys are grouped into split-
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keys. Even less frequently used keys are grouped into quad-keys. To avoid users 
accidentally triggering system keys such as ALT and CONTROL, these keys have a 
slightly decreased target width and are separated by a no-action border area. In 
consideration of Benford’s law that states (roughly) that the digit one (1) occurs 30% 
of the time in most writing, the 1-key, as well as the 0-key, is assigned a full-size key. 

 

Figure 3.7. Shape writing using the re-designed ATOMIK layout. The 
user’s input will be recognized as the word text. Ink fades out 
gradually over time (described in the Feedback subsection later in this 
section). 

3.2.2 Error Correction 

All text entry methods inevitably lead to errors. Therefore it is important to enable 
fast and flexible error correction mechanisms. For instance, with a standard desktop 
computer setup, the user can use the BACKSPACE, DELETE, HOME, END and arrow 
keys to move the caret around in the document, and delete text in both the forward 
and backward direction using the DELETE and BACKSPACE keys). The de-facto 
direction-manipulation text editing interface used by the graphical user interfaces 
(GUI) allows the user to move the caret at any desired position in the text. In fact, the 
search for comparatively more effective tools for text editing led to the publication of 
a now famous computer input device study paper by Card, English and Burr [1978]. 

Efficient error correction can be improved when words rather than characters should 
be corrected. For this purpose the continuous shape writing system uses a user 
interface component called an edit buffer (see Figures 3.8 and 3.9). Words appear in 
the edit buffer to the right and pushes existing words to the left. When words cross the 
left edge they are synthesized into keyboard key strokes and injected into the 
operating system’s key stroke dispatch queue. 

  



34 Discrete and Continuous Shape Writing for Text Entry and Control 

3.2.2.1 Correcting a Confusion Error 

With continuous shape writing, words are written on a word-by-word basis. This 
means an error results in an entire word being incorrect. The system alleviates this 
problem by providing several pen-gesture functions for intuitive editing. Figure 3.8 
shows how a user deletes the two words and editing by simply crossing them. Any 
individual word or sequence of words can be deleted by a crossing action. The 
intuitiveness of crossing out words as a delete action has been confirmed in the 
literature [Wolf and Morrel-Samuels, 1987]. 

 

Figure 3.8. The user deletes a series of words by crossing them. 

Every word that is outputted from the continuous shape writing recognizer is marked 
with gray background to signal to the user they are selectable. The user can delete 
such words completely in one action by pressing the BACKSPACE key once. This 
function allows users to quickly try again if misrecognition occurred. It is also 
possible to change the position of the text caret by crossing words top-down. The text 
caret repositions to either the beginning or the end of the crossed word, depending on 
where the user crossed it. For example, in Figure 3.9 the user has repositioned the text 
caret behind the word Writing. The part of the crossed word that is closest to the text 
caret becomes highlighted for a brief period of time to show the user where the text 
caret moved and reinforce the idea that the part of the word that is crossed matter to 
the text caret repositioning function. The highlight gradually fades out during a brief 
period (800 ms). 

 

Figure 3.9. The user has repositioned the text caret by crossing the 
rightmost part of the word Writing from above. 

When the user selects a word output from the recognizer a pull-down list of alternate 
words is displayed. The alternate words are ranked by a confidence score output from 
the recognizer (essentially a measure of how close the words are for the recognizer in 
relation to the user’s input). The first entry in the list is always the top ranked word 
that was output by the recognizer. The user can select an alternate word that replaces 
the word in the edit buffer. 
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To enable efficiency while simultaneously reducing novice users’ frustration, the 
selection process of an alternate word supports two different selection methods. With 
the first method the user first taps on the word with the pen to reveal the list of 
alternate words. Then the user selects the desired word from the list with another tap 
with the pen. In the second method, the user taps and holds the pen down on the word. 
Then the user slides the pen to the desired word and lifts up the pen. The second 
method is more fluid but informal user testing revealed that some users are used to 
pull-down menu widgets appearing after a tap only. These users were confused when 
the menu immediately disappeared when they lifted the pen. 

 

Figure 3.10. The user reveals a semi-transparent list of alternative 
word candidates by selecting a word. 

3.2.2.2 Correcting an Out-of-Vocabulary Error 

Another possible error is the out-of-vocabulary (OOV) error [Furnas, Landauer, 
Gomez and Dumais, 1987]. If a user wants to write a word that does not exist in the 
lexicon the user has to add that word explicitly. Since continuous shape writing 
recognition does not rely on training data (see Chapter 4 for details) words can be 
immediately added to the system’s lexicon. If a user taps a word using the software 
keyboard the system automatically performs a check to see if the word exists in the 
system lexicon. If it does not, the user’s tapped word is drawn with a surrounding 
dashed rectangle to create an affordance for the user to click on it (see Figure 3.11). 
When the user clicks on the word, the user can select the ADD TO LEXICON function 
from the pull-down menu (see Figure 3.12). The new word can be immediately shape 
written by the user afterwards. 
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Figure 3.11. The user has written the word ubicomp that does not 
exist in the lexicon. 

 

Figure 3.12. The user adds the word ubicomp to the lexicon. 

3.2.3 Feedback 

3.2.3.1 Display of Recognized Word and Reinforcement of the Ideal Shape 

As soon as the user lifts up the pen or finger, the recognized word is displayed. The 
recognized word is displayed at the point of pen-up since that is the most likely 
position where the user’s focus of visual attention will be. 

In addition the ideal shape of the recognized word is displayed for a brief period of 
time (600 ms).  The display of the ideal shape reinforces the shape of the word to the 
user. Figure 3.13 shows the ideal shape for the word system displayed over the 
software keyboard. The dot indicates the starting position of the ideal shape. 

 

Figure 3.13. The user’s pen-gesture has been recognized as the word 
system. The recognized word is displayed at the point where the pen 
was lifted. 
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3.2.3.2 Minimizing Pen-Trace Clutter 

Displaying the ink of the pen as the user articulates a pen-gesture is advantageous. 
First, it gives the user information that the pen motion is still recorded. Second, it 
provides a sense of orientation to the user on where the pen has traveled on the 
keyboard. However, some words are longer than others and when the pen has moved 
back and forth on the keyboard the visual clutter from the pen trace becomes 
distracting. A solution is to progressively fade the tail part of the pen-gesture when 
the trace increases in length (see Figure 3.14). 

 T Th 

1.     2.  

 The Theor 

3.     4.  

 Theore Theoreti 

5.     6.  

 Theoretic Theoretical 

7.     8.  

Figure 3.14. The user is writing the word theoretical. The tail part of 
the user’s pen trace gradually fades out as the pen trace progresses to 
minimize visual clutter. 
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Figure 3.15 shows the effect of pen-trace clutter reduction when the user has written 
the word theoretical on the ATOMIK layout using continuous shape writing. As can be 
seen in Figure 3.15, beyond a certain threshold there is no clear advantage of 
displaying the entire pen trace because the pen trace is simply too cluttered to be 
understandable. 

      

Figure 3.15. The difference between reduced (left) and non-reduced 
(right) pen-trace clutter when writing the word theoretical. 

3.2.3.3 Morphing Visualization 

A morphing algorithm is implemented to help novice users understand what part of 
their pen traces contributes to the match of the recognized word. After the user has 
lifted up the pen the complete pen trace of the user is drawn with blue ink and the 
ideal shape of the word is drawn in red ink (see Figure 3.16). Thereafter both traces 
are resampled into an equal large number of equidistant sample points. Next, the 
sample points that are indexed at the same position in the user’s pen trace and the 
ideal word shape are connected by imaginary lines. A pair of two imaginary lines is 
then formed into an area by connecting the four vertices in the line-pair in sequence. 
This area is painted by a low-translucent blue color. The visual area explicitly 
communicates the spatial distance between the pen trace and the ideal word shape to 
the user. To create a stronger visual effect the user’s pen trace is gradually 
transformed into the ideal word shape over time (Figure 3.16). The intermediate forms 
of the user’s pen trace are found by linear interpolation. 
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1.  

2.  

3.  

4.  

Figure 3.16. The user has written the word computer. The user’s pen 
trace is gradually morphing towards the ideal word shape. 

The effect of the morphing visualization has not been formally tested. Informal user 
testing shows that some users think it is “cool” and “interesting”. It appears morphing 
visualization has a positive qualitative effect of keeping some novice users interested 
in the text entry method. The downside of using morphing visualization is that it 
demands visual attention and adds clutter to the interface. Academically it remains an 
open question whether there are any measurable quantifiable effects of this form of 
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visual feedback on for example novice users’ error rates, or the closeness of users’ 
pen trace in relation to the ideal word shape. In practice all visual feedback features 
are selectable options in the software. Morphing visualization is probably also 
effective as a support-tool in a pen-gesture design toolkit, e.g. [Long, Landay and 
Rowe, 1999]. 

3.2.4 Avoiding the Hand Obscuring the Keyboard Layout 

A practical problem with continuous shape writing is that the user’s hand tends to 
obscure the keyboard. This problem has also been reported by participants in 
experiments (see Experiment 3.2, later in this chapter). 

A solution is to display a “virtual” projection of the software keyboard above the real 
software keyboard (Figure 3.18). A red cursor on the projection indicates the current 
pen location. 

A problem with the phantom keyboard approach is that it does not scale down to 
small mobile phone displays. In such cases, a method such as offsetting the cursor 
(similar to take-off [Potter, Weldon and Shneiderman, 1988]) can be used. 

 

Figure 3.17. Example of writing with a phantom keyboard. The user is 
in the process of writing the word keyboard. 
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Figure 3.18. Photograph of the phantom keyboard activated on a 
computer tablet.  

3.3 Shape Writing on Mobile Phone 
Continuous shape writing has been implemented for mobile phones (Figure 3.19). 
This section outlines the user interface changes that were necessary to streamline the 
user experience for the limited mobile phone form factor. 
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Figure 3.19. The user interface for continuous shape writing on 
mobile phones. The user is writing the word fun. 

The keyboard QWERTY and ATOMIK keyboard layouts have been streamlined to fit the 
small mobile phone screen (Figure 3.20). Only essential letter and system keys are 
displayed on the first level. 

      

Figure 3.20. The QWERTY and ATOMIK software keyboard layouts for 
continuous shape writing on mobile phones. 

Because of the small screen estate mobile phones cannot afford a secondary user 
component such as the edit buffer. Instead words are synthesized into keystrokes and 
injected into the keystroke queue of the mobile phone operating system as soon as the 
words are recognized. To delete unintended or misrecognized words the user can use 
any of the built-in editing functions made available from the mobile phone operating 
system. 

In addition, alternate word candidates are displayed as soon as the user lifts up the 
pen. In Figure 3.21 the user has written the word the (marked in blue color). The 
alternate words thyme and thrive that also partially match the user’s pen trace are 
displayed next to the. The user can change the word at the system text caret by 
selecting any of the alternate words. If none of the alternate words is the user’s 
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intended word, the user can select the recognized word (the in Figure 3.21) and 
immediately delete the entire word at the caret. 

 

Figure 3.21. The alternate word candidates for the user’s pen-gesture 
are displayed immediately in close vicinity to the software keyboard. 

The mobile phone implementation remembers the alternate words for a fixed set of 
outputted words. In the current implementation this buffer can hold 200 alternate 
words. When the user changes position of the system text caret the continuous shape 
writing system automatically retrieves the alternate words for the word at the text 
caret. Therefore the user does not need to constantly scan the list of alternatives for 
every word entry. Rather, text correction can happen when for example the user is 
ready to send a written email and proof-read the text. 

The mobile phone continuous shape writing pattern recognizer uses a tweaked version 
of the recognition algorithms described in Chapter 4. As an example of such a tweak 
the lexicon is encoded into a compact format that makes it possible to simultaneously 
derive both the original string (the word) and the pattern representation. Assuming 
average word length is five characters, using this lexicon compression scheme 50,000 
words and their pattern representations can be stored in only 450K memory. Using 
indexing the average latency is less than 20 ms with a lexicon consisting of 50,000 
patterns on a mobile phone equipped with a 32-bit 168 MHz Texas Instruments 
OMAP1510 CPU. Continuous shape writing is not only a concept, it is already 
practical for mobile phones. 

3.4 Practice Game 
A challenge for new text entry products is the need for an easy and fun tutorial, or 
game, on how to effectively write text using the new method. There is a multitude of 
typing tutors that have been developed for the desktop keyboard. One of the highly 
polished typing tutors is Typing of the Dead by Sega Entertainment where the user 
kills zombies by typing text shown in front of them. A variant of that game has 
recently been researched in the context of learning how to write Japanese characters 
[Stubbs, 2003]. 

A balloon practice game was created to teach shape writing (see Figure 3.22). The 
basic game concept is a variant of the traditional typing tutor game in which the user 
must respond to letters, or words, on the screen as quickly as possible. In this version 
balloons are floating upwards on the screen. In each balloon a word is displayed. To 
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pop the balloon the user has to shape write the word displayed on the balloon. To get 
a better score and accuracy the user must pop as many balloons as possible while 
avoiding writing incorrect words. 

 

Figure 3.22. The shape writing practice game. The score next to the 
balloon icon indicates how many words that were successfully 
inputted (in the figure 78). The percentage next to the crosshair icon 
shows the accuracy (in the figure 75%). By selecting the AUTO option 
the system automatically pen-gestures the currently shown words. 

The design goals of the game were threefold: 

1. Efficiency. It should teach users to shape write the most common words in 
a short amount of practice time 

2. Fun. The game should be engaging, or at least not repetitive and boring. 

3. Challenge. The game should challenge users to write faster. 

3.4.1 Efficiency 

Not all words occur at equal frequency. In fact, word distribution is heavily skewed 
and can be modeled with Zipf’s law [Zipf, 1935]: 

 αr
rP 1~)(  ( .1) 3

where  is the probability of occurrence of the word, )(rP r  is the rank of the word, 
and α  is close to unity. 
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An example of Zipf’s law is the distribution of English words. In the British National 
Corpus (BNC) 46% of the corpus is composed of the 100 most frequently used 
English words. Therefore even practicing the top 100 words will greatly benefit the 
user. This is also the reasoning behind the practice game displaying words in the order 
of their frequency of occurrence (in a large corpus). For example, the first words 
displayed in the practice game for U.S. English are: the, of, and, etc. 

Not all words are equally difficult, and previous research indicates that users think it 
is frustrating to be forced to re-write words they are already good at [Zhai, Sue and 
Accot, 2002]. On the other hand, until a word shape is completely subsumed into a 
user’s motor memory, repetition is necessary in order to push the user to expert mode. 
For this reason, words are scheduled to appear according to an expanding rehearsal 
interval (ERI) algorithm [Landauer and Bjork, 1978]. See Experiment 3.1 for a 
detailed explanation of ERI. 

By tapping on the Auto button the game demonstrates to the user how to write the 
ideal word shape for the currently displayed word. Psychomotor research has shown 
the benefit of “observational practice” [Kohl and Shea, 1992]. The demonstration 
mode can also serve as an instructive interface and prevent habits stemming from 
users getting confused on how recognition works. For instance, in Experiment 5.2 in 
Chapter 5 it was observed that some users thought that arcing around the keys would 
make recognition easier as opposed to directly cross the letter keys. However, since 
shape writing recognition is agnostic regarding the individual keys crossed this habit 
only creates more opportunities for confusion in the recognizer. 

3.4.2 Fun 

To let the game feel less predictable the balloons do not float up to the sky using a 
direct vertical route. Instead a balloon follows a movement path defined by a spline 
whose two control points vary in the x and y directions with pre-set intervals. The 
acceleration of a balloon along the path also has a random component that enables a 
balloon to temporarily “catch wind” and float a little faster along its movement path. 

3.4.3 Challenge 

To motivate users to write fast, the balloons do not “stick” at the top of the screen. 
Instead balloons disappear, and are counted as a “miss”, when they float above the 
view port. Therefore the user must quickly write the prompted words on the balloons 
before they disappear. The number of balloons displayed simultaneously on the 
screen, and the speed in which the balloons rise in the air increase slightly as the game 
progresses to keep the game interesting when the user improves. Another variation 
under consideration is to allow novice users to “freeze” the currently displayed 
balloons and repeatedly practice those words. Freezing the screen allows users who 
do not currently understand how shape writing works to practice words in a playful, 
yet relaxed setting. To avoid user frustration in having to start the game from the 
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beginning (e.g. [Zhai, Sue and Accot, 2002]), and to keep players interested in going 
back to the practice game, the current player state is automatically saved and restored 
every time the user exits or starts the game. 

3.5 Localization 
Continuous shape writing can be directly used in all languages that define words as a 
sequence of letters drawn from a limited-size alphabet. Currently, continuous shape 
writing has been implemented for U.S. English, German (Figure 3.23) and Korean 
(Figure 3.24). This section describes how the continuous shape writing system was 
modified to handle German and Korean. 

3.5.1 German 

The German alphabet is similar to English. The only essential difference is that the 
German alphabet also contains the diacritic (umlaut) letters ü, ä and ö; and the 
ligature ß (Eszett). 

The standard German software keyboard is based on the QWERTY layout. To improve 
typing performance when working with German text the y and z letter keys have 
switched place. In addition, the extra letters in the German alphabet are inserted on 
the right hand side of the Latin letters. Since the top-left row-letter sequence has 
changed in relation to QWERTY, the German layout is called QWERTZ (Figure 3.23). 

 

Figure 3.23. Writing German words with continuous shape writing on 
the QWERTZ software keyboard layout. 

3.5.2 Korean 

The Korean language uses an alphabet that consists of 24 letters called jamo. Of these 
14 are consonants and 10 are vowels. Unlike the Latin alphabet text composition is 
not merely a linear stream of jamo. Rather, jamo are composed into syllabic units 
called Hangul. The composition of jamo into Hangul follows algorithmic rules. 
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Figure 3.24. Continuous shape writing of Korean text. The keyboard 
layout is rather arbitrary and designed by me for testing purposes 
only. The green keys are consonants and the red keys are vowels. 

The Unicode standard [The Unicode Consortium, 2003] defines an algorithm that 
deterministically translates jamo into Hangul. To achieve this, the Unicode standard 
defines more jamo characters than there are jamo letters in the jamo alphabet. In the 
Unicode standard 19 lead, 21 vowel and 27 tail jamo characters are defined. Separate 
representation of jamo with identical glyphs is required for a canonical jamo string 
representation that can be unambiguously translated into Hangul (see Hangul Syllable 
Composition algorithm (page 87) in [The Unicode Consortium, 2003]). 

In the following discussion the Unicode character encoding in hexadecimal radix will 
follow in parenthesis after the jamo. 

By inspection of the Unicode charts, it is evident the excessive lead, vowel and tail 
jamo characters are merely combinations of the jamo alphabetic primitives (letters). 
For instance, the extra jamo lead ᄁ (0x11A9) is merely a repetition of the jamo letter 
ᄀ (0x1100). The lead jamo ᄀ (0x1100) has a corresponding tail jamo ᆨ (0x11A8) 
with an identical glyph. Note that the specific Unicode character encodings are 
critical. The jamo to Hangul translation will not work correctly unless the tail jamo is 
at the end of the jamo string and vice versa for the lead jamo. 

For continuous shape writing the details of jamo to Hangul translation is not critical. 
On the contrary, from a user’s point-of-view it makes more sense to only represent the 
core 24 jamo letters that have distinct glyphs as letter keys on the software keyboard. 

This can be achieved by designing a surjective function that maps canonical Unicode 
jamo strings into the 24 jamo letters that are represented by letter keys. Tables 3.1, 3.2 
and 3.3 lists lookup tables for three surjective functions that achieve this mapping. 
Note that the Hangul Syllable Decomposition algorithm [The Unicode Consortium, 
2003] is well defined for all canonical jamo strings. Since all Hangul syllables can be 

  



48 Discrete and Continuous Shape Writing for Text Entry and Control 

decomposed into canonical jamo strings this means (by transitivity) that all Hangul 
syllables can be encoded into the 24 jamo letter keys on the software keyboard 
(Figure 3.25). 

Hangul decomposition

Hangul canonical jamo

surjective function

jamo letters
 

Figure 3.25. Converting Hangul to jamo letters. 

The surjective mapping makes the reverse process of converting continuous shape 
writing jamo letters into canonical jamo strings ambiguous. To avoid this ambiguity 
the system has a table that maps continuous shape writing jamo letter streams back to 
the original canonical jamo strings. This table is consulted when the canonical jamo 
string is required for conversion to Hangul for display. 

Table 3.1. Surjective function from lead jamo consonants to jamo 
letters. 

In Unicode [In] Out Unicode [Out] 
ᄀ 0x1100 ᄀ 0x1100 
ᄁ 0x1101 ᄀ 0x1100 
ᄂ 0x1102 ᄂ 0x1102 
ᄃ 0x1103 ᄃ 0x1103 
ᄄ 0x1104 ᄃ 0x1103 
ᄅ 0x1105 ᄅ 0x1105 
ᄆ 0x1106 ᄆ 0x1106 
ᄇ 0x1107 ᄇ 0x1107 
ᄈ 0x1108 ᄇ 0x1107 
ᄉ 0x1109 ᄉ 0x1109 
ᄊ 0x110A ᄉ 0x1109 
ᄋ 0x110B ᄋ 0x110B 
ᄌ 0x110C ᄌ 0x110C 
ᄍ 0x110D ᄌ 0x110C 

0x110E ᄎ 0x110E ᄎ 

0x110F ᄏ 0x110F ᄏ 

0x1110 ᄐ 0x1110 ᄐ 

0x1111 ᄑ 0x1111 ᄑ 

0x1112 ᄒ 0x1112 ᄒ 
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Table 3.2. Surjective function from tail jamo consonants to jamo 
letters. 

In Unicode [In] Out Unicode [Out] 
ᆨ 0x11A8 ᄀ 0x1100 

0x11A9 ᄀ 0x1100 ᆩ 

0x11AA ᄀ, ᄉ 0x1100, 0x1109 ᆪ 

ᆫ 0x11AB ᄂ 0x1102 
0x11AC ᄂ, ᄌ 0x1102, 0x110C ᆬ 

0x11AD ᄂ, ᄒ 0x1102, 0x1112 ᆭ 

0x11AE ᄃ 0x1103 ᆮ 

0x11AF ᄅ 0x1105 ᆯ 

ᆰ 0x11B0 ᄅ, ᄀ 0x1105, 0x1100 
0x11B1 ᄅ, ᄆ 0x1105, 0x1106 ᆱ 

0x11B2 ᄅ, ᄇ 0x1105, 0x1107 ᆲ 

0x11B3 ᄅ, ᄉ 0x1105, 0x1109 ᆳ 

0x11B4 ᄅ, ᄐ 0x1105, 0x1110 ᆴ 

0x11B5 ᄅ, ᄑ 0x1105, 0x1111 ᆵ 

0x11B6 ᄅ, ᄒ 0x1105, 0x1112 ᆶ 

ᆷ 0x11B7 ᄆ 0x1106 
ᆸ 0x11B8 ᄇ 0x1107 

0x11B9 ᄇ, ᄉ 0x1107, 0x1109 ᆹ 

0x11BA ᄉ 0x1109 ᆺ 

0x11BB ᄉ 0x1109 ᆻ 

0x11BC ᄋ 0x110B ᆼ 

0x11BD ᄌ 0x110C ᆽ 

0x11BE ᄎ 0x110E ᆾ 

0x11BF ᄏ 0x110F ᆿ 

0x11C0 ᄐ 0x1110 ᇀ 

0x11C1 ᄑ 0x 1111 ᇁ 

0x11C2 ᇂ 0x1112 ᄒ 
 

Table 3.3. Surjective function from jamo vowels to jamo letters. 

In Unicode [In] Out Unicode [Out] 
ᅡ 0x1161 ᅡ 0x1161 

0x1162 ᅡ, ᅵ 0x1161, 0x1175 ᅢ 

ᅣ 0x1163 ᅣ 0x1163 
0x1164 ᅣ, ᅵ 0x1163, 0x1175 ᅤ 

0x1165 ᅥ 0x1165 ᅥ 

0x1166 ᅥ, ᅵ 0x1165, 0x 1175 ᅦ 

0x1167 ᅧ 0x1167 ᅧ 

0x1168 ᅧ, ᅵ 0x1167, 0x1175 ᅨ 

ᅩ 0x1169 ᅩ 0x1169 
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ᅪ 0x116A ᅩ, ᅡ 0x1169,  0x1161 
ᅫ 0x116B ᅩ, ᅣ, ᅵ 0x1169, 0x1163, 0x1175 
ᅬ 0x116C ᅩ, ᅵ 0x1169, 0x1175 
ᅭ 0x116D ᅭ 0x116D 
ᅮ 0x116E ᅮ 0x116E 
ᅯ 0x116F ᅮ, ᅥ 0x116E, 0x1165 
ᅰ 0x1170 ᅮ, ᅥ, ᅵ 0x116E,  0x1165, 0x1175 
ᅱ 0x1171 ᅮ, ᅵ 0x116E, 0x1175 
ᅲ 0x1172 ᅲ 0x1172 
ᅳ 0x1173 ᅳ 0x1173 
ᅴ 0x1174 ᅳ, ᅵ 0x1173, 0x1175 
ᅵ 0x1175 ᅵ 0x1175 

 
Table 3.4. The test lexicon used for Korean. 

Jamo Hangul Sound Encoding 
ᄆ, ᅡ 마 ma (syllable) 
ᄒ, ᅡ 하 ha (syllable) 
ᄂ, ᅡ 나 na (syllable) 
ᄂ, ᅡ, ᄆ, ᅮ 나무 na-mu (word: tree) 
ᄆ, ᅩ, ᆨ 목 mok (syllable) 
ᄆ, ᅡ, ᆫ 만 man (syllable) 

 
The Hangul column entries in Table 3.4 were inputted by me with the Korean 
continuous shape writing system directly. Table 3.4 demonstrates three base cases of 
translation from jamo to Hangul. The first three entries merge pairs consisting of an 
initial jamo character followed by a vowel into Hangul syllables. The fourth entry 
merges four jamo characters into two Hangul syllables (a word). The last two entries 
handle the case where three jamo alphabet primates are composed into a single 
Hangul syllable.  

Figure 3.26 shows the Korean word for tree (na-mu) being gestured by connecting the 
jamo letters 나무 in sequence. The final Hangul it encoded as the two characters 
나무. Figure 3.27 shows the software keyboard where the jamo letter keys are 
“flipped” to reveal their corresponding sounds. 
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Figure 3.26. Entering the Korean word for tree (나무) using continuous 

shape writing with a Korean keyboard layout and a Korean lexicon. 

 

Figure 3.27. The Korean software keyboard can optionally display the 
sounds of the jamo letter keys. In the edit buffer the Korean word for 
tree is shown in Hangul (나무). 

From the foundation outlined in this subsection it is trivial to mine Hangul corpora 
and create a practical lexicon for Korean continuous shape writing. Finally, note that 
there are 20 mappings that consist of two jamo characters, and only two mappings 
that consist of three jamo characters. To increase efficiency it may be worthwhile to 
consider introducing three-jamo-character-mappings as separate keys on the software 
keyboard. 

3.6 Experiment 3.1: Learning 
The above sections have laid out the technical foundation and conceptual motivations 
for continuous shape writing as an effective and enjoyable text entry method. 
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However, in the end the usefulness and efficacy of a text entry method can only be 
captured and validated through empirical studies. Text entry is heavily skill-based and 
factors that affect this skill are complex and not completely understood. For example, 
five hundreds years of research in stenography never resulted in a conclusive 
understanding on either how to design an efficient stenographic system, or which 
existing stenography system that in some sense would be superior (see Melin [1927; 
1929] for a comprehensive survey and analysis). Another example is the typewriter 
invention and the much debated QWERTY layout. To this day, there is still no clear 
consensus on the amount of quantifiable advantage of changing the QWERTY layout to 
DSK (Dvorak Simplified Keyboard) (for U.S. English) [Yamada, 1980; Norman and 
Fisher, 1982]. In fact, the QWERTY-Dvorak debate created a topic in economics of 
“path dependency” called qwertynomics [David, 1985] (see also Liebowitz and 
Margolis [1990] for an opposite view). 

As a skill-based technique text entry is heavily affected by users’ cognitive abilities 
and motor control performance. Factors such as age, prior experience [Rosenbaum, 
1991] and native language [Isokoski and Linden, 2004], are known to impact motor 
skill acquisition and performance in text input. In regard to continuous shape writing, 
some users generally hand write neater and draw better than others. To some extent 
the spatial ability of drawing appears to be related to users’ amount of practice and 
general interest in the task. For example, Kozbelt [2001] shows that artists copy line 
drawings significantly better than non-artists. 

It is hard to estimate an average text entry rate because users’ skill, typing style and 
the text genre affect performance. The true average text entry rate is most likely 
highly individual and near-impossible to capture in a controlled experiment. Logging 
long-term users’ actual typing data for several years is probably more informative. In 
the end, what is important is that the text entry rate is not perceived as a hindrance but 
rather as an enabler. For example, an inefficient or tedious keypad-based text entry 
method that causes users to postpone writing urgent emails and thereby negatively 
affecting users’ work style is clearly unacceptable. 

For these reasons and given the scope of the dissertation I leave a comprehensive 
empirical evaluation of continuous shape writing as future work. Instead, I report on 
three small-scale initial experiments that each tests different and specific aspects of 
shape writing. The results obtained from these experiments set out the basic 
expectations of shape writing performance. 

 The first experiment focuses on learning. The experiment is designed to answer the 
two perhaps most basic research questions on continuous shape writing: First, can 
users learn the pen-gesture shapes for words? Second, if so, what is the typical 
learning rate and is there a low limit to the number of shapes one can memorize in 
shape writing?  
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3.6.1 Method 

3.6.1.1 Design 

The experiment consisted of five sessions. The first session was a practice session 
only, and the last session was a testing session only. The second, third and fourth 
sessions consisted of first a testing session and afterwards a practice session. 

3.6.1.2 Participants 

Six paid volunteers were recruited from the Linköping University campus. Two were 
male and four were female. Their ages ranged from 20-30 (mean = 24.7, sd = 2.6). 
None of the participants had any prior experience with either continuous shape 
writing or the ATOMIK software keyboard layout. All participants were native Swedish 
speakers, fluent in English. 

3.6.1.3 Apparatus 

A Wacom tablet model ET-0405-U was used as the pen input device. The tablet was 
connected to a Windows 2000 desktop computer. A 21" CRT screen with a desktop 
resolution of 1280 × 1024 pixels was used as the display. 

A software keyboard with the ATOMIK keyboard layout was used. The pattern-
recognizer for continuous shape writing was based on the elastic matching algorithm 
[Tappert, 1982]. For a description of how the algorithm was implemented see 
[Kristensson, 2002]. 100 words were inserted into the lexicon. The pen-gestures were 
recognized independent of scale and translation. That is, it did not matter to the 
recognizer where the user articulated the pen-gesture, nor did it matter how large the 
pen-gesture was in relation to the software keyboard. 

3.6.1.4 Material 

100 words taken from the British National Corpus (BNC) were used in the 
experiment. The words consisted of the top ranked words in the BNC. However, since 
the words would be recognized invariant of scale and translation transformations for 
the purpose of testing users’ ability to learn and remember shapes in this experiment, 
words that were ambiguous were filtered out and replaced with words ranked 101-300 
in the BNC. All words used in the experiment are listed in Table 3.5. 

Table 3.5. The words used in Experiment 3.1 and their corresponding 
shape as defined by the classic ATOMIK layout (Figure 3.29). The dot 
indicates the starting position of the pen-gesture. 

 

the  that  knowing  while  

 this  about  problem  and 

in  these  could  against  

 those  think  service  inside 
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 did  people  never  have 

 does  after  house  has 

 done  right  down  had 

 doing  because  school  having 

 are  between  report  he 

 our  before  start  him 

 from  through  country  his 

 which  place  really  it 

 will  become  provide  its 

 were  such  local  they 

 said  change  member  them 

 can  point  within  was 

 whose  system  always  their 

 went  group  follow  not 

 gone  number  without  for 

 other  however  during  you 

 another  again  bring  your 

 being  world  although  she 

 seeing  course  example  her 

 knew  company  question  with 

       on 
 

 

3.6.1.5 Procedure 

To improve learning the ERI (expanding rehearsal interval) method was used 
[Landauer and Bjork, 1978]. ERI has earlier been successfully used in stylus typing 
learning [Zhai, Sue and Accot, 2002]. With the ERI paradigm words are not repeated 
uniformly. Instead, the interval between the word repetitions is gradually increased. 
As Zhai, Sue and Accot [2002] notes this is similar to how people learn foreign 
words. The practice sessions used the ERI algorithm to schedule the appearance of 
words. A single word appeared within a set interval initially configured to 30 seconds 
for the word. If a user successfully reproduced the pen-gesture shape for the word the 
interval was doubled. If a user failed to reproduce the pen-gesture shape for the word 
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the interval was left unchanged. After the user had responded to a word the next word 
scheduled to appear within its rehearsal interval was displayed. If no such word 
existed, a new unpracticed word was picked from word list, configured with an initial 
rehearsal interval of 30 seconds, and displayed to the user. 

Practice sessions lasted 40 minutes with a 5-minute break in the middle. Participants 
were encouraged to take breaks anytime they wanted. 

The experiment software prompted a single word to the participant (Figure 3.28). If 
the participant could not remember the word shape the participant was instructed to 
reveal the software keyboard by pressing the SHOW KEYBOARD button (Figure 3.29). 
This operation was also necessary when the user was confronted with a previously 
unseen word. 

 

Figure 3.28. The user interface in the practice sessions in Experiment 
3.1. The user is writing the word inside without the software keyboard 
as a visual reference. 

When the user pressed the SHOW KEYBOARD button the current entry was considered 
a failed entry. The ideal word shape was presented superimposed on the software 
keyboard. If the user’s last pen trace was available, the pen trace was scaled and 
translated in relation to the ideal word shape and also shown to the user (Figure 3.29). 
When the user pressed the NEXT WORD button the software keyboard was 
automatically hidden and a new word presented. 
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Figure 3.29. The user interface in the practice sessions in Experiment 
3.1. The user has pressed the SHOW KEYBOARD button and the user’s 
pen trace (shown as a solid stroke) is displayed along with the ideal 
trace (shown as a dashed stroke) overlaid on the software keyboard. 

In the testing sessions words the participants had already practiced were presented in 
random order (Figure 3.30). Testing sessions lasted 6 to 20 minutes. The user had two 
attempts for each word tested. If the user failed two attempts the next word was 
tested. After all words that had previously been presented to the user during practice 
had been tested, the testing session ended. 
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Figure 3.30. The user interface in the testing sessions in Experiment 
3.1. The user is in the process of writing the word inside without the 
software keyboard as a visual reference. 

3.6.2 Results 

3.6.2.1 Recall Rate 

The results showed that given practice all participants were able to write the shapes 
for all words they practiced. Typically 7-15 repetitions were required. Figure 3.31 
plots the number of words participants were able to recall as a function of test session 
number. Since the pattern-recognizer was in an early prototype stage sometimes 
participants could enter shapes that were mistakenly misrecognized. Therefore, 
participants were given a second chance to try to enter the shape of a word again, if 
the first attempt failed. 

Figures 3.31 and 3.32 show that the number of words learned per session (first or 
second attempt) is a linear function of session number. There were no major 
individual differences found (see also Figure 3.32). Participants learned 14.7 words on 
average per session (sd = 4.9). 

In the last session participants successfully recalled 52.2 word shapes (sd = 43, min = 
39, max = 67) on the first attempt and 60.3 (sd = 10.8, min = 49, max = 77) on the 
second attempt. The error rate was 23.7% (sd = 7.7) for the first attempt, and 11.2% 
(sd = 6.3) for the second attempt. 

There were no signs of a slower learning rate in later sessions. In fact, in the last 
session the learning rate improved slightly (see Figure 3.32). If there is a limit to the 
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number of word shapes a grown-up user can learn, and how high that limit might be is 
unknown. 
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Figure 3.31. Average number of words correctly written as a function 
of test session number. 
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Figure 3.32. Mean and standard deviation of number of words users 
learned per session as a function of test session number. 
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3.6.2.2 Response Time 

The average response time (recorded from pen-down to pen-up) was 2430 ms (sd = 
2600). Note that response times were expected to be high because participants’ focus 
was set on remembering the shapes for the words. Participants were also not 
instructed to perform quickly. The word house had the fastest response time (mean = 
392 ms), and the word service the slowest (mean = 19090 ms). 

These response times should be interpreted with care. Many participants begun a 
stroke and then stopped in-stroke when trying to recall where to go next. This was 
especially true for the longer and more complicated pen-gesture shapes of words. 

3.6.2.3 Subjective Rating and Open Comments 

After the experiment participants answered a set of questions on a 7-grade Likert 
scale. 

Participants thought the experimental task was medium frustrating (mean = 2.8, sd = 
1.4), stimulating to use (mean = 5.3, sd = 0.8), slightly easy to use (mean = 4.2, sd = 
1.9), and slightly easy to learn (mean = 4.2, sd = 1.5). 

On the question “If such a method is made available for practical use, would you learn 
it?” with a scale ranging from -3 Definitely no to +3 Definitely yes participants 
answered 1.6 on average (sd = 1.2). When asked if they would use it in a list of 
situations, none of the participant choose Not at all, ⅓ of the participants answered 
Yes, when a physical keyboard is not available and ⅔ of the participants answered 
Yes, to replace keyboard typing sometimes, and none Yes, to replace keyboard typing 
all the time. 

Some participants felt that the rehearsal interval multiplier was set too aggressive and 
as a result words that were correctly entered were rehearsed less frequent than 
desirable. Other participants liked the rehearsal interval multiplier as it was. This 
suggests the rehearsal interval multiplier perhaps should be tweaked on an individual 
basis in a future version. 

After each session participants were encouraged to write a brief note with open 
comments that they might have. Most participants wrote that the entry method was 
somewhat exciting: “It’s fun!”, “Kind of fun…”, “...more fun that boring”. 

3.6.3 Discussion 

The experiment showed that users learn on average around 15 word shapes per 
session. The learning rate showed no sign of slowing down as the sessions progressed. 
In the end all participants had learned to recall at least 39 word shapes without any 
visual reference. 

Further, participants felt that continuous shape writing was fun. ⅔ of the participants 
even stated at the end of the experiment that if continuous shape writing was made 
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available for practical use they would want to replace keyboard typing sometimes 
with it. 

In summary, participants could quickly learn the shapes for the continuous shape 
writing pen-gestures. Since both the shape writing method in itself and the keyboard 
layout ATOMIK was completely novel to the participants, the results indicate that users 
indeed have a strong capability to rapidly learn novel pen-gestures with practice. 

3.7 Experiment 3.2: Immediate Efficacy 
The following experiment investigates the initial learning curve for novice users 
exposed to continuous shape writing. 

Text entry proficiency is a function of practice. A user that completely masters 
continuous shape writing has learned the shapes of thousands of words in motor 
memory. Zipf’s law [Zipf, 1935] predicts that the frequency of a word is 
approximately inversely proportional to its rank. Zipf’s law has the effect that 
common words are repeated disproportionally often. Therefore it is reasonable to 
expect users to relatively quickly learn the shapes for the highest ranked words in the 
language. On the other hand, less ranked words are repeated disproportionally less. 
From this analysis the expected learning curve for a highly skilled expert continuous 
shape writing user is most likely very long. On the hand, less common and longer 
words are usually made of more common fragments whose shapes are likely 
remembered in a relatively short amount of practice with shape writing. Overall, users 
will always be somewhere in between a complete novice and a complete expert when 
writing open text. 

This experiment examines users’ efficacy with continuous shape writing during the 
first 40 minutes of use. The goal of the experiment is to verify that continuous shape 
writing is practical from the start. 

Zhai, Sue and Accot [2002] shows that for well-practiced users the ATOMIK layout is 
much faster for software keyboard typing than QWERTY. In addition, Experiment 3.1 
previous in this chapter showed that users could relatively quickly learn the shapes of 
shape writing pen-gestures on ATOMIK. On the other hand, participants are completely 
unfamiliar with ATOMIK but most likely accustomed to typing with QWERTY. To gain 
any insight into whether the layout used is a significant factor to initial performance, 
both QWERTY and ATOMIK were tested. 

To obtain a reference point the thumb keyboard was introduced as a baseline 
condition. Several other options were considered such as handwriting recognition or 
Graffiti which are the status-quo text entry methods on pen-computers. However, both 
handwriting recognition and Graffiti has been shown to be relatively slow (< 15 wpm 
[Card, Moran and Newell, 1983; Sears and Arora, 2002]). In contrast, although not in 
the same pen-stroke-based category as shape writing, thumb keyboard was recently 
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demonstrated to be a highly competitive mobile text entry method where users 
eventually after several hours of practice reached almost 60 wpm on average 
[Clarkson, Clawson, Lyons and Starner, 2005]. 

3.7.1 Method 

3.7.1.1 Design 

The experiment was a within-subjects learning curve experiment with 2 sessions. 
Each session was split into two sub-sessions with a different condition in each 
session. In one sub-session participants used continuous shape writing.  In the other 
participants used a thumb keyboard. The starting condition alternated between the 
sessions. The initial starting condition was balanced across the participants. In the 
shape writing condition half of the participants were assigned QWERTY and half 
assigned ATOMIK. 

3.7.1.2 Participants 

Ten paid volunteers were recruited from the Linköping University campus. Eight 
were male and two were female. Their ages ranged from 19-35 (mean = 23.1, sd = 
4.7). Six participants had previously used a handheld computer before. Eight 
participants had used a pen-based computer or mobile phone before. No participants 
had used shape writing before. Four participants had used a thumb keyboard before. 
The participants were screened for dyslexia and repeated stress injury (RSI). All 
participants were native Swedish speakers, fluent in English. 

3.7.1.3 Apparatus 

The shape writing condition used a Fuijistu-Siemens tablet PC. The screen was a 14" 
TFT LCD touch screen with 24-bit color depth and 1024 × 768 pixel resolution. The 
screen was set to landscape orientation. The tablet PC was placed on top of a desk 
during the experiment. 

The thumb keyboard condition used a Hewlett-Packard iPAQ h6315 Pocket PC 
mobile phone. The screen was a 3.5" TFT LCD touch screen with 16-bit color depth 
and 240 × 320 pixel resolution. The thumb keyboard was connected to the bottom of 
the device using the serial connector. The thumb keyboard model Hewlett-Packard 
HSTNH-D01K was designed specifically for this particular mobile phone model and 
was firmly attached to the device once connected. The device dimensions (excluding 
thumb keyboard attachment) were 137.64 (height) × 74.6 (width) × 20.8 (depth) mm. 
The device (excluding thumb keyboard attachment) weighted 190g. Participants were 
instructed to hold the smart phone with both hands and type using the thumbs. 

Both the thumb keyboard and the software keyboard in the continuous shape writing 
condition used letter keys with a diameter of 8 mm. 

See Figure 3.33 for a photograph of the tablet and mobile phone. 
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The continuous shape writing condition used the pattern recognizer described in 
Chapter 4. The lexicon contained 15,000 words. The keyboard layout for the shape 
writing condition was either QWERTY or ATOMIK. It was explained to the participants 
that the ATOMIK layout was optimized for better performance but might be harder to 
learn. Participants were then given the choice of which layout they wanted to use. The 
exception to this rule was the two last participants who were involuntarily assigned 
QWERTY layout in order to balance the number of participants using either QWERTY 
and ATOMIK (five participants per layout). The two participants that did not get to 
choose layout were not informed until after the experiment that an alternative layout 
for shape writing existed. 

 

Figure 3.33. The tablet computer and mobile phone used in 
Experiment 3.2 and 3.3. The thumb keyboard is connected to the 
mobile phone. 

3.7.1.4 Material 

Since the goal of this experiment was to study the initial performance in the first 40 
minutes of “natural” use, the text used in the study was meant to simulate naturally 
occurring common phrases. The phrase set released by MacKenzie and Soukoreff 
[2003] was used as material in the study. Some words in the phrase set were 
misspelled and these were corrected. The phrase set consists of 500 phrases in U.S. 
English. The phrase set has been criticized for containing many “trigger words” that 
confuse persons suffering of dyslexia [Kano, 2005]. To eliminate this confound 



 Continuous Shape Writing 63 

participants were screened for dyslexia, as described earlier. The order of the phrases 
was scrambled for each participant and condition to avoid a skill transfer confound 
across the conditions. 

3.7.1.5 Procedure 

Each sub-session lasted 20 minutes. The experiment software presented a single 
phrase on top of the screen. The participant was asked to quickly and accurately write 
the phrase displayed. The participants were also instructed to correct errors as they 
discovered them. The experiment software interfaces for the shape writing and thumb 
keyboard conditions are shown in Figures 3.34 and 3.35 respectively. 

In both the shape writing condition and the thumb keyboard condition a phrase was 
considered entered when the participant pressed the ENTER key. The initial time stamp 
was measured when the participant entered a key in the thumb keyboard condition, or 
when the participant pressed down the pen in the shape writing condition. 

 

Figure 3.34. The experiment software interface in the shape writing 
(QWERTY) condition (running on a computer tablet). Participants were 
encouraged to move the software keyboard to a comfortable position.  
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Figure 3.35. The experimental software running in the thumb 
keyboard condition on a mobile phone. 

To avoid fatigue a 30 second break was automatically enforced by the software every 
5 minutes. Break scheduling was designed to not interfere with the writing task and 
therefore only occurred after the current phrase was completed. During a break the 
software displayed a countdown informing the user when the session would be 
resumed. 

3.7.2 Results 

3.7.2.1 Error Rate 

There are two primary sources when measuring error rate. The first is uncorrected 
errors which are the errors participants never discovered or bothered to correct in their 
text. The second is the number of corrected errors where the user discovered and 
corrected an error. Because participants’ correction of errors reduces entry rate, the 
number of uncorrected errors is the source that mattes when measuring error rate in 
relation to entry rate. The corrected errors are used when the editing process is 
analyzed. Below the unqualified term error rate refers to the number of uncorrected 
errors only. 

 Overall, error rate was low and did not depend on either condition or keyboard 
layout. The average error rate for both sessions was 0.9% (sd = 0.6) for shape writing 
and 1.1% (sd = 0.6) for thumb keyboard. Repeated measures analysis of variance 
showed that the difference between the two conditions was not significant (F1, 9 = 
.494, p = .5). 
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Within the shape writing condition, the average error rate for both sessions was 1.1% 
(sd = 0.2) for QWERTY and 0.8% (sd = 0.9) for ATOMIK. Variance analysis (between 
subjects) showed that the difference was not significant (F1, 9 = .474 p = .511). 

The fact that the error rate for shape writing is very low is highly encouraging. 

It is also interesting to examine the amount corrected errors made by participants. 
Note however that this measurement of error rate is not related to entry rate because 
the time taken for error correction is included in the entry rate figure and cannot be 
separated out. In practice, error correction is a task integrated in all text entry methods 
and cannot be completely avoided. 

In the shape writing condition the participants corrected 5.1% (sd = 8.6) of the words 
on average.  

A more detailed analysis of the corrected errors in the shape writing condition reveals 
that the uncorrected average error rate was 5.6% (sd = 8.8) during the first 20 minutes, 
and 4.6% (sd = 8.4) during the last 20 minutes. One participant in particular had an 
error rate that was more than 2.5 standard deviations away from the mean and 
contributed disproportionally to the gross error rate. From inspection of the log file it 
appears this participant was “trying out” the system while in-test in the beginning of 
each session thus inflating error rate. Excluding this participant, the uncorrected 
average error rate was 3.2% during the first 20 minutes, and 2.2% during the last 20 
minutes. During the first 20 minutes three participants had zero recognition errors, 
and during the last 20 minutes six participants had zero recognition errors. 

With thumb keyboard participants corrected 4.7% (sd = 3.1) of the characters on 
average. Because shape writing and thumb keyboard operates on different levels – 
characters vs. words and have vastly different correction mechanisms it is 
inappropriate to compare the two methods’ corrected errors against each other 
directly. However, an analysis of the number of words that were corrected (with the 
BACKSPACE key) in the thumb keyboard condition reveals that participants corrected 
on average 24.8% of all words (actual words) in the thumb keyboard condition. 

From this analysis it appears shape writing results in much less word errors than 
thumb keyboard (5.1% [including all participants] vs. 24.8%). On the other hand, 
errors in shape writing are more severe because they result in a different word 
(although often most characters in the incorrect word are still correct in relation to the 
user’s intended word), while thumb keyboard errors most of time results in a 
misspelled word where only a single character is wrong. Because of the difficulty in 
performing a direct comparison in corrected errors on either the character or word 
level, statistical significance tests were not performed on these errors. 
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3.7.2.2 Entry Rate 

The grand average entry rate of all trials in both sessions was 16.6 wpm (sd = 6.5) for 
shape writing and 27.7 wpm (sd = 3.9) for thumb keyboard. Repeated measures 
analysis of variance showed that the difference is significant (F1, 9 = 21.788, p < .01). 
Note, however, that the shape writing condition lumps together both the QWERTY and 
ATOMIK sub-conditions. 

Not surprisingly, entry rate performance varied considerably between QWERTY and 
ATOMIK shape writing. The average entry rate averaged over both sessions was 20.9 
wpm (sd = 5.6) for QWERTY and 12.3 wpm (sd = 4.1) for ATOMIK. Variance analysis 
(between subjects) showed that the difference was significant (F1, 9 = 7.563, p < .05). 
Users were significantly faster when using QWERTY in the initial 40 minutes of use. 

Repeated measures analysis of variance showed that even with QWERTY, continuous 
shape writing was significantly slower than thumb keyboard (20.9 (sd = 5.6) vs. 25.8 
(sd = 3.4) wpm; F1, 4 = 7.829, p < .05). This result was expected given 1) users’ brief 
exposure to continuous shape writing, and 2) users’ skill transfer from desktop to 
thumb keyboard typing. 

Figure 3.36 plots the initial curve for the two sessions (recall that an individual 
session lasted 20 minutes). As shown in Figure 3.36 the entry rate (averaged over all 
participants) was higher for thumb keyboard across all 5-minute intervals. It is also 
evident that continuous shape writing was faster with QWERTY than ATOMIK. From 
Figure 3.36 is also evident that shape writing with QWERTY is immediately practical. 
After 5 minutes of practice the average entry rate is around 15 wpm. After 20 minutes 
of practice the average text entry rate is beyond 20 wpm. As a reference point, 
Wobbrock, Chau and Myers [2007] found that participants writing with the common 
T9 predictive text entry method never surpassed 16 wpm, not even after 15 20-minute 
sessions. 
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Figure 3.36. Average entry rate (wpm) as a function of practice 
(minutes). Power law regression curves are superimposed for 
reference [Crossman, 1959]. 

There were considerable individual variations. Figure 3.37 shows the entry rate 
(wpm) distribution among participants for both conditions during the last 10 minutes 
in the experiment. As is evident in Figure 3.37, the spread is much wider in the 
continuous shape writing condition than in the thumb keyboard condition. In terms of 
entry rate, the continuous shape writing condition had simultaneously both the worst 
(entry rate < 9 wpm) and best (entry rate > 40 wpm) performers. The thumb keyboard 
condition resulted in a narrower distribution centering at an entry rate around 29 wpm 
(see also Figure 3.37). 
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Figure 3.37. Entry rate (wpm) histograms of the participants in both 
conditions for the last 10 minute interval in the experiment. Note that 
participants that used QWERTY and ATOMIK layouts are lumped together 
in the left plot. 

Figure 3.38 plots the learning curve for the top performers in both the continuous 
shape writing and thumb keyboard conditions. Note that these were different 
individuals. The fastest participant with thumb keyboard appears to have quickly 
saturated at around 35 wpm. In contrast, the fastest participant with continuous shape 
writing (QWERTY) continuously improved (except at the 30-35 minute interval when 
performance was near constant), and exceeded the fastest thumb keyboard typist at 
the last 5-minute interval. 
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Figure 3.38. Entry rate (wpm) as a function of practice (minutes) for 
the participants with the highest average entry rate in the shape 
writing (QWERTY) and thumb keyboard conditions respectively. As a 
reference point, power learning curves [Crossman, 1959] are 
superimposed for both conditions. 

3.7.2.3 Subjective Ratings and Open Comments 

After the experiment participants answered a set of questions on a 7-grade Likert 
scale. Friedman’s repeated measures non-parametric test was used to determine 
significances. 

An overview of the subjective ratings is shown in Figure 3.39. Participants liked 
writing with shape writing (mean = 5.2, sd = 1.0) more than the thumb keyboard 
(mean = 4.3, sd = 1.0), but the result was not significant (χ2 = 2.7, df = 1, p = .102).  
Participants felt thumb keyboard was more physically demanding (mean = 4.5, sd = 
1.6) than shape writing (mean = 3.6, sd = 1.2), but the result was not significant (χ2 = 
.4, df = 1, p = .527). Participants significantly (χ2 = 9.0, df = 1, p < .01) looked more 
on the software keyboard (mean = 5.6, sd = 0.8) than the thumb keyboard (mean = 
4.1, sd = 1.5). Last, participants significantly (χ2 = 5.45, df = 1, p < .05) felt writing 
with shape writing was more fun (mean = 5.4, sd = 0.8) than thumb keyboard (mean = 
3.7, sd = 1.4). 
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Figure 3.39. Participants’ subjective ratings in Experiment 3.2. 

On the statement “The geometric trace of the words come to my mind when writing 
with [condition]”, with 5 possible responses: { 1 = never, 2 = rarely, 3 = sometimes, 4 
= often, 5 = always }, participants answered that it occurred to them more often with 
continuous shape writing (mean = 3.3, sd = 0.9) than for thumb keyboard (mean = 
2.7, sd = 1.3), but the result was not significant (χ2 = 2.0, df = 1, p = .157). 

3.7.3 Discussion 

The results show that after 35 minutes of practice users can reach over 25 wpm with 
continuous shape writing (QWERTY). Layout does matter. QWERTY is faster to learn 
than ATOMIK. No participant that used ATOMIK was able to reach an entry rate faster 
than 20 wpm. On average, thumb keyboard was faster than continuous shape writing 
in this initial stage of use. An interesting exception is that the only participant that 
reached an entry rate > 40 wpm used continuous shape writing (QWERTY). This 
suggests that the ATOMIK layout may be only attractive to advanced users who are 
willing to invest effort and sacrifice short-term performance to learn a new layout that 
eventually might pay off later. On the other hand, even though the participants dealt 
with a double learning task (shape writing as a method of entry and a completely new 
keyboard layout), their average performance after five minutes of learning was still 
comparable to character-based hand writing methods such as Jot where participants 
typically achieves < 10 wpm after a few minutes of practice [Sears and Arora, 2001; 
Költringer and Grechenig, 2004].  A surprising anecdotal result is that among the first 
eight participants, five chose ATOMIK over QWERTY. 
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In comparison to thumb keyboard, participants felt shape writing was more fun to 
write with than thumb keyboard. The majority of the participants (90%) stated that 
physical discomfort with thumb keyboard and the small keys was a problem in the 
open comments section of the questionnaire handed out after the experiment. Some 
participants (20%) reported discomfort when using continuous shape writing because 
they had to lean over a table to write. Actual use of shape writing on a mobile phone 
would alleviate or remove this problem. 

Participants self-reported that they found themselves looking at the software keyboard 
more than the thumb keyboard. 40% of the participants said their hand tended to 
obscure the keys when writing with shape writing. There was no apparent relation 
between keyboard layout used and this remark. 

Clarkson, Clawson, Lyons and Starner [2005] reports on a thumb keyboard 
experiment where participants reached on average 31.7 wpm during the first 20 
minutes. In comparison, in this experiment participants reached 26.wpm during the 
first 20 minutes. Clarkson et al. [2005] reports an average 6% “total error rate” 
[Soukoreff and MacKenzie, 2003b] during the first 20 minutes of use. The total error 
rate metric lumps together both corrected and uncorrected errors and it is therefore not 
possible to conclude whether error rates obtained in this experiment were similar to 
those in Clarkson et al. [2005]. 

Since there is an inherent speed-accuracy tradeoff present in text entry, it is possible 
that participants in the study reported by Clarkson et al. [2005] did not attempt to 
correct as many errors. Because only “total error rate” is reported, it is also possible 
participants did correct many errors and were simply faster. Other possible 
explanations for the entry rate difference include random variation, and the facts that 
participants in this experiment were older and not native English speakers. 

3.8 Experiment 3.3: Accelerated Novice Performance 
Experiment 3.2 showed that users can reach over 25 wpm after 35 minutes of practice 
when shape writing with the QWERTY layout. Further, an individual user can reach 
over 40 wpm after 35 minutes of practice. It is well known in the literature that text 
entry performance is skill-based and high performance depends on extended practice. 

It is plausible that shape writing as a novel skill, in particular in combination with a 
new optimized layout, requires large amount of practice for the user to truly excel. In 
comparison, a physical keyboard-based method benefits from skill transfer from the 
desktop keyboard, which even though it takes years of practice to be proficient with, 
is a skill typically already learned by computer users. 

To gain a glimpse of what level of performance is possible had the user gained 
substantial amount of practice, an “accelerated learning” experiment was designed. 
This experiment accelerates novice performance for a single phrase by letting 
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participants repeatedly practice writing individual words. Thereafter entry rates 
achieved by participants repeatedly writing the phrase are measured. The goal of the 
experiment is to quickly find the asymptotic novice user entry rate performance. 

3.8.1 Method 

3.8.1.1 Design 

The experiment was within-subjects and single-session. The session was split into two 
sub-sessions with a different condition in each session: one using shape writing and 
the other using thumb keyboard. The starting condition was balanced across the 
participants. In the shape writing condition half of the participants were assigned 
QWERTY and half assigned ATOMIK. 

3.8.1.2 Participants 

Ten paid volunteers were recruited from the Linköping University campus. Nine were 
male and one was female. Their ages ranged from 21-35 (mean = 24.1, sd = 4.1). 
Seven participants had participated in Experiment 3.2. Seven participants had 
previously used a handheld computer before. Eight participants had used a pen-based 
computer or mobile phone before. Eight participants had used a thumb keyboard 
before.  The participants were screened for dyslexia and repeated stress injury (RSI). 
All participants were native Swedish speakers, fluent in English. 

3.8.1.3 Apparatus 

The apparatus used was identical to Experiment 3.2. 

3.8.1.4 Material 

Five phrases were randomly selected from the Enron email corpus [Klimt and Yang, 
2001]. The phrases were selected based on the condition that at least half of the words 
in the phrases were among the top-100 ranked words in the American National 
Corpus (ANC). This procedure was designed to minimally ensure the phrases model 
typical U.S. English. The phrases are shown in Table 3.6. 

Table 3.6. The phrases used in Experiment 3.3 and their average word 
rank in U.S. English in a large corpus. 

Phrase Average Rank 
Thanks for taking care of this 246.6 
You forgot to attach the request 2351.2 
Does anyone else have any comments 269.3 
Look forward to seeing you soon 269 
My hands are full 196.5 
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3.8.1.5 Procedure 

Each sub-session lasted a maximum of 25 minutes. Each sub-session had two phases. 

The first sub-session was a practice phase where an isolated word from the test phrase 
was displayed and practiced (see Figures 3.40 and 3.41). Participants were instructed 
to write the word as quickly as possible and refrain from correct their input. In the 
continuous shape writing condition a word entry was considered inputted when the 
user lifted up the pen. In the thumb keyboard condition users had to press the ENTER 
key to signal end-of-word. No measurements were recorded in the practice session. 

 

Figure 3.40. The experimental practice session interface in the shape 
writing condition. 
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Figure 3.41. The experimental practice session interface in the thumb 
keyboard condition. 

The second sub-session was a test phase where the entire phrase was displayed and 
entered (see Figures 3.42 and 3.43). A display showed the entry and error rate for the 
last entry to the left, and the best entry and error rate the participant had achieved so 
far to the right. The best entry rate was only updated if the error rate was < 10%. 
Otherwise, the display showed the last error rate in red as an indication to the 
participant that the error rate was too high to be accepted. 
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Figure 3.42. The experimental testing session interface in the shape 
writing condition. 

 

Figure 3.43. The experimental testing session interface in the thumb 
keyboard condition. 

In both the shape writing condition and the thumb keyboard condition a phrase was 
considered entered when the participant pressed the ENTER key. The initial time stamp 
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was measured when the participant entered a key in the thumb keyboard condition, or 
when the participant pressed down the pen in the shape writing condition. 

Participants were instructed to rest whenever they wanted to after a phrase had been 
entered. 

3.8.2 Results 

3.8.2.1 Entry Rate 

The maximum entry rate is in the following discussion defined as the maximum entry 
rate achieved by an individual participant. 

The average entry rate for all entries with no errors was 45.8 wpm for continuous 
shape writing and 46.4 wpm for thumb keyboard. Repeated measures analysis of 
variance showed that the difference was not significant (F1, 9 = .035, p = .855). The 
performance distributions are shown in Figure 3.44. As is evident in Figure 3.44 
individual performance varied considerably. Particularly, in the shape writing 
condition it is apparent that some participants learned and could write text using shape 
writing more effectively than others. The average maximum entry rate with no errors 
was 57.5 wpm (sd = 19.5) for shape writing and 59.1 wpm (sd = 13.3) for thumb 
keyboard. Repeated measures analysis of variance showed that the difference was not 
significant (F1, 9 = .152, p = .705). 

The particular layout used in the shape writing condition had no effect. The average 
entry rate with no errors was 46.5 wpm (sd = 8.1) for QWERTY and 45.1 wpm (sd = 
20) for ATOMIK. Analysis of variance (between subjects) showed that the difference 
was not significant (F1, 9 = .024, p = .881). The average maximum entry rate with no 
errors was 56.4 wpm (sd = 8.6) for QWERTY and 58.6 wpm (sd = 28) for ATOMIK. 
Analysis of variance (between subjects) showed that the difference was not significant 
(F1, 9 = .028, p = .871). 
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Figure 3.44. Entry rate frequency distribution among participants. 
Error rate = 0%. 

Large individual differences were expected due to the short sessions exposed to 
participants. Recall that only a maximum of 15 minutes of practice was allowed and 
the test only lasted for 10 minutes. Figure 3.45 shows the average entry rate obtained 
by each participant for both conditions as a function of participant number, where 
participants are ranked by the sum of their average entry rate in both the shape writing 
and thumb keyboard conditions. Figure 3.46 shows the maximum entry rate obtained 
by each participant for both conditions as a function of participant number, where 
participants are ranked by the sum of their maximum entry rate in both the shape 
writing and thumb keyboard conditions.  
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Figure 3.45. Average entry rate (wpm) for both conditions as a 
function of participant number, ranked by performance. Error rate = 
0%. 
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Figure 3.46. Maximum entry rate (wpm) for both conditions as a 
function of participant number, ranked by performance. Error rate = 
0%. 
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3.8.2.2 Subjective Ratings and Open Comments 

After the experiment participants answered a set of questions on a 7-grade Likert 
scale. Friedman’s repeated measures non-parametric test was used to determine 
significances. 

An overview of the subjective ratings is shown in Figure 3.47. Participants 
significantly (χ2 = 4.5, df = 1, p < .05) liked writing with continuous shape writing 
(mean = 5, sd = 1.6) more than the thumb keyboard (mean = 3.8, sd = 1.8). They also 
felt thumb keyboard was physically more demanding (mean = 4.8, sd = 1.8) than 
continuous shape writing (mean = 3.4, sd = 1.2), but the result was not significant (χ2 
= 2.778, df = 1, p = .096). Participants stated they looked slightly less on the thumb 
keyboard (mean = 5.2, sd = 1.6) than the software keyboard (mean = 5.9, sd = 1.0), 
but the result was not significant (χ2 = .667, df = 1, p = .414). Last, participants stated 
that they significantly (χ2 = 6.4, df = 1, p < .05) felt continuous shape writing was 
more fun to write with (mean = 5.3, sd = 1.2) than thumb keyboard (mean = 3.7, sd = 
1.6). 
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I like writing with… It is physically
demanding to write
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I look intensively at
the keys when
writing with…

It is fun to write
with…

Thumb keyboard Continuous shape writing  

Figure 3.47. Participants’ subjective ratings in Experiment 3.1. 

On the statement “The geometric trace of the words come to my mind when writing 
with [condition]”, with 5 possible responses: { 1 = never, 2 = rarely, 3 = sometimes, 4 
= often, 5 = always }, participants significantly ((χ2 = 5.45, df = 1, p < .05) answered 
that it occurred to them more often with continuous shape writing (mean = 4.1, sd = 
0.7) than for thumb keyboard (mean = 2.8, sd = 1.3). 
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In the open comments section, 2 participants wrote that it was annoying that the hand 
obstructed the keys when shape writing. A single participant stated that the thumb 
keyboard was very physically demanding. Another participant wrote that the thumb 
keyboard had too small keys to be comfortable. 

3.8.3 Discussion 

On average participants had entry rates around 46 wpm and error rates around 1% 
using both shape writing and thumb keyboard. As in Experiment 3.2 the spread in 
entry rates was larger in the continuous shape writing condition than in the thumb 
keyboard condition. 

Recent research has shown that the motor memories of newly practiced skills do not 
stabilize until after 5 hours of practice [Shadmehr and Holcomb, 1997]. Considering 
that the test session followed immediately after the practice session an alternative 
experimental setup where the test session was delayed may have lead to different 
results. Thumb keyboard is less likely to have suffered from this effect because of the 
strong skill transfer from desktop keyboard typing. 

In relation to previous reported empirical studies of the baseline thumb keyboard 
condition, Clarkson et al. [2005] reports on a thumb keyboard experiment where 
participants reached on average 60.3 wpm after 20 20-minute sessions. In comparison, 
in this experiment participants only reached 46.4 wpm with the thumb keyboard. The 
different results are remarkable because in Clarkson et al. [2005] participants wrote 
open text, while in this experiment participants repeated a well-practiced phrase. 
Therefore it is reasonable to believe that entry rates in this experiment would have 
been higher or at least at a comparable level as in Clarkson et al. [2005]. One 
explanation could be the high (> 8%) average “total error rate” reported in Clarkson et 
al. [2005]. Perhaps participants in the experiment [Clarkson et al., 2005] never were 
able to type 60 wpm with no errors on any phrases at all. Another explanation is that 
participants in this experiment never saturated their thumb keyboard performance and 
could do better given more practice. Other possible explanations for the entry rate 
difference include random variation, and the facts that participants in this experiment 
were older and not native English speakers. 

An open question is whether participants saturated their performance. Because the 
software keyboard was always present as a visual reference it cannot be excluded that 
participants’ articulations were primarily visual-guided rather than primarily recall 
driven. If this is the case, the participants never completely saturated learning and 
transitioned into fast open-loop recall from motor memory. This explanation appears 
likely given the evidence that the fastest participant with ATOMIK was two times faster 
than the two slowest participants using the same layout. Because ATOMIK is 
unfamiliar to the participants, this layout is particularly sensitive to participants who 
never saturate their learning. Participants who never saturate rely on visual search of 
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the keys which will be particularly slow when the layout is previously unknown to 
them. 

A future experimental setup should involve several sessions of practice and testing 
that focuses on learning and open-loop recall similar to the experimental method in 
Experiment 3.1. These sessions should be separated by at least a day to allow proper 
motor memory consolidation. After such sessions one or two test sessions should be 
initiated where the software keyboard is hidden to force recall from motor memory. 
While arguably artificial, such an experimental setup is more likely to reveal the true 
expert entry rate limit for shape writing. 

3.9 Summary 
This chapter has presented the concept and design rationales of continuous shape 
writing as a novel mobile text entry method. In addition critical user interface 
components and localization issues have been discussed. 

Experiment 3.1 showed that users aided by an expanding rehearsal algorithm learn the 
shape writing word shapes relative fast. On average users learned 15 word shapes per 
40 minute training session. The results indicated that it is possible to completely 
memorize the shape writing gestures for all words tested by all participants, with a 
relatively low number of repetitions (typically 7-15). The results to some extent 
justified one of the basic principles of shape writing – the use of continuous geometric 
patterns as representations of words. 

Experiment 3.2 showed the initial 40-minute learning curve for continuous shape 
writing in comparison to thumb keyboard as the baseline condition. Probably due to 
skill transfer from desktop typing, participants could achieve on average 29.6 wpm 
with thumb keyboard after 35 minutes of practice. For shape writing users initial 
performance depended on the keyboard layout used. Participants were significantly 
faster with QWERTY than ATOMIK. Using QWERTY, participants achieved an average 
entry rate at 25.6 wpm after 35 minutes of practice. Using ATOMIK, participants 
achieved an average entry rate at 15.3 wpm after 35 minutes of practice. Average 
error rates were very low in both conditions, < 1% for continuous shape writing, and 
1.1% for thumb keyboard. The experiment showed that although novel to the users, 
continuous shape writing using QWERTY was a practical text entry method from the 
start (average entry rate was 19.7 wpm after five minutes of practice) without much 
initial learning requirement. With a new and optimized layout such as ATOMIK, the 
results suggest that certain amount of practice is necessary before a practical speed 
(e.g. > 15 wpm) can be obtained. 

Experiment 3.3 showed that on average participants reached entry rates higher than 45 
wpm for both continuous shape writing and thumb keyboard. The average and 
maximum entry rate distribution among participants had a higher spread for 
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continuous shape writing than for thumb keyboard. Some participants using 
continuous shape writing were much faster than others. Three participants using 
continuous shape writing (ATOMIK) were able to write the assigned test phrase in over 
70 wpm with no errors at least once. One participant using continuous shape writing 
(ATOMIK) reached a maximum text entry rate of 99 wpm with no errors. This was the 
highest entry rate recorded in the experiment. 

In summary, for pen-based interfaces, continuous shape writing is a competitive 
technology. Novice users have low error rates < 1% and reaches an average entry rate 
of 25 wpm after 35 minutes of practice. An advanced user can reach over 40 wpm 
after 35 minutes of practice. Expert users can potentially reach over 70 wpm for well-
practiced words and phrases. There is empirical evidence that when using continuous 
shape writing on ATOMIK a completely saturated phrase can be inputted at an entry 
rate over 98 wpm with no errors. 

In addition users liked writing with continuous shape writing more than writing with 
the thumb keyboard, and also felt continuous shape writing was a more fun text entry 
method to use. 

 



Chapter 4 

Recognizing Continuous Shape Writing1

This chapter provides the technical details necessary to implement an effective 
continuous shape writing recognizer. 

4.1 Introduction 
Pen-gesture and handwriting recognition belongs to the general field of pattern 
recognition. Duda, Hart and Stork [2001] divides the pattern recognition process into 
five major components: sensing, segmentation, feature extraction, classification and 
post-processing (Figure 4.1). 

 

Figure 4.1. The general process workflow of a pattern recognition 
system [Duda et al., 2001]. 

The sensors convert outside stimuli into a machine readable format, the segmentation 
component divides the input into recognizable chunks, the feature extractor extracts 
the relevant features from the input, the classifier finds the best matching class for the 

                                                 
1 Parts of section 4.2: Pen-Gesture Recognition are from Kristensson [2004]. Subcection 4.3.1: Multi-
Channel Recognition consists of revised parts from Kristensson and Zhai [2004]. 
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input, and the post-processing unit performs additional processing such as for instance 
error risk analysis or integration of the results from multiple classifiers [Duda, Hart 
and Stork, 2001]. 

In pen-gesture recognition the input to the recognizer is usually an ordered series of 
time stamped two-dimensional quantized points on a pixel grid (e.g. touch screen, 
monitor display) typically sensed from pen, finger or mouse movement. Pen-gestures 
are naturally segmented because the system receives a signal when pen-up, finger lift 
or mouse button release occurs. Feature extraction, classification and post-processing 
depend on the pen-gesture recognizer method used. Traditional approaches in pen-
gesture recognition have relied on region encoding [Diamond, 1957; Teitelman, 1964; 
Newman and Sproull, 1979], special recognition “programs” [Lipscomb, 1987], 
feature matching [Goldberg, 1997], trainable linear machines [Duda and Hart, 1973; 
Rubine, 1991] or elastic matching [Burr, 1981; Tappert, 1982]. 

4.2 Pen-Gesture Recognition 
This section lists the most closely related work to pen-gesture recognition in the 
literature. The literature is in fact surprisingly sparse on pen-gesture recognition and 
mainly focused on on-line and off-line handwriting recognition. On the other hand, 
handwriting recognition has benefited from tremendous research efforts in the last 
two decades [Tappert, Suen and Wakahara, 1990; Plamondon and Srihari, 2000; Nafiz 
and Yarman-Vural, 2001; Koerich, Sabourin and Suen, 2003]. 

4.2.1 Region Encoding 

Originally region encoding was originally developed to recognize isolated numerals 
[Diamond, 1957] and characters [Teitelman, 1964]. Diamond [1957] presents a 
hardware implementation for recognizing isolated numerals. The user slides a pen 
connected to a source of potential across a series of line crossings. The line crossings 
are thin conductors that become energized by the pen and thereby activate latches. 
Numerals are then defined as one or more pre-defined unique series of crossed lines. 
The system described by Diamond [1957] is template-based. Each template is 
encoded as a series of regions that are visited in order by the pen. This is the central 
idea behind region encoding. 

In the first trainable pen-gesture recognizer [Teitelman, 1964] each pen-gesture in the 
lexicon is overlaid on a  grid. The grid is typically mn× 33×  but other grid 
resolutions are possible. In the implementation by Teitelman [1964] the regions need 
not be rectangular, and can in fact be arbitrarily defined by the user if new regions are 
required to discriminate among new pen-gestures that are added later to the template 
set. The idea in Teitelman [1964] is that the user trains the system by entering all 
desired pen-gestures (for instance alphanumeric characters) into the system and 
creates new regions as they are required. The pen-gesture templates are stored as a 
sequence of regions visited in a binary tree. When the system is trained, an arbitrary 
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pen-gesture articulation is encoded into a series of regions visited. The binary tree is 
then searched for the pen-gesture with the closest matching region encoding. 

In a later implementation the regions are fixed and defined in such a matter that each 
template pen-gesture only requires 16-bit storage [Newman and Sproull, 1979]. 

Region encoding can be effective if only a small set of pen-gestures are used and the 
definition of the pen-gestures is arbitrary. Region encoding is invariant to scale and 
translation differences between the input and template pattern. Region encoding is 
also computationally efficient and easy to implement. For these reasons it is a popular 
method for various “mouse gesture” software packages. For example, the mouse 
gesture extension to the Mozilla Firefox web browser uses a variant of region 
encoding2. 

There are primarily two downsides to region encoding. First, the coarse division of an 
input pattern into regions constrains the expressiveness and size of the vocabulary of 
template patterns considerably. Second, region encoding is intolerant to input patterns 
that break the region sequence. The decision step that assigns a region to part of an 
input pattern is binary and a small deviation in the input pattern causes a region to 
become misinterpreted and thereby results in recognition failure. 

4.2.2 Feature Matching 

A less limiting pen-gesture recognition methodology is extraction of geometric 
features. As an example consider the Unistrokes [Goldberg and Richardson, 1993] 
recognition algorithm [Goldberg, 1997]. In [Goldberg, 1997] six geometric features 
are extracted from the user’s pen trace. Examples of two such features are the spatial 
distances between the horizontal and vertical components of the pen down and pen up 
locations [Goldberg, 1997]. Once the six features have been extracted, the features are 
used to look up the best matching Unistroke in a table. 

The algorithm in [Goldberg, 1997] is template-based and does not rely on training 
data. Rather, the table is built by hand to discriminate among the possible pen-
gestures in the Unistrokes alphabet. While this approach may be sufficient for a 
specialized application with a small set of pen-gestures, it is unlikely the approach 
would scale as the number of pen-gestures in the template set increases. 

4.2.1 Linear Machines 

An alternative to template matching is to train a classifier to recognize certain pen-
gestures written by the user. The classifier is trained using features that are extracted 
from prototypical pen traces representing a pen-gesture. A common statistical 
classifier is the linear machine [Duda and Hart, 1973]. An example of a linear 

                                                 
2 mozgestOverlay.js revision 1.198.4.3 code lines 471-561. Accessible at: 
http://www.mozdev.org/source/browse/optimoz/mozgest/mozgest/content/mozgestOverlay.js?rev=1.19
8.4.3&content-type=text/x-cvsweb-markup [Accessed April 18, 2007]. 
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machine pen-gesture classifier is the Rubine recognizer [Rubine, 1991]. It uses 13 
features, such as initial slope angle, length of the trace, etc. The Rubine recognizer 
have been used in many research projects such as for example an automated website 
design tool [Newman, Lin, Hong and Landay, 2003] and a pen-gesture design toolkit 
[Long, Landay and Rowe, 1999]. 

Mathematically a linear machine is a set of linear discriminant functions { }   

operating on a set of c  classes 

c
iig 1)( =x

{ }c
ii 1=ω  . The classifier assigns iω  to an input feature 

vector x  if [Duda and Hart, 1973]: 
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In the case of a linear machine, the covariance matrix is , where  is the 
variance, and  is the identity matrix. The linear discriminant function is: 
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where )( iP ω  is the prior class probability. Equations 4.2-4.4 are derived from the 

assumption that the feature vectors follow a multivariate Gaussian distribution [Duda 
and Hart, 1973]. 

There are some limitations of this approach for pen-gesture recognition. First, a linear 
machine requires training data. That means every pen-gesture must be entered by a 
user (and each inputted pen-gesture is assumed to represent a prototypical input 
version of the pen-gesture) several times for the classifier to be able to handle 
deviations in the signal. Second, a linear machine is a simplification of statistical 
pattern classification. First, the features are assumed to be statistically independent, 
and some features such as the length and duration of the pen-gesture do not fulfill this 
criterion. Second, it is assumed that each feature has the same variance. Analytically, 
another problem with a linear machine is the possibility of two geometrically 
dissimilar shapes to be seen as completely identical to the recognizer. For an example 
of this deficiency with the recognizer proposed by Rubine [1991], see Figure 4.2. 
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Figure 4.2. The left and right pen-gestures (starting points marked by 
dots) are completely ambiguous for the classifier presented in Rubine 
[1991]. 

There are also advantages to a pen-gesture recognizer based on a linear machine. It is 
easy to implement, and should have reasonable performance for a small set of pen-
gestures.  

4.2.2 Elastic Matching 

Elastic matching is a template matching procedure that is popular in image 
processing. It is inspired by a dynamic programming method used to align time-
shifted wave signals in speech recognition called dynamic time warping [Rabiner and 
Juang, 1993]. The earliest use of elastic matching for hand-drawn line matching 
appears to be a paper by Burr [1981]. Tappert [1982] presents a method of using 
elastic matching in handwriting recognition. Niblack and Yin [1995] proposes using 
elastic matching for shape matching in the IBM QBIC (query by image content) 
image search system. 

The central idea in elastic matching is that a distance between two sets of points (or 
connected lines) can be computed by finding the minimum amount of deformation 
necessary to transform one set of points into the other. Elastic matching is scale, 
translation and rotation invariant if one pattern is preprocessed to a “best fit” to the 
other pattern (e.g. via least-squares or another method). 

The advantage of elastic matching is that it can be readily used as a template matcher 
without any training data. Further, it is relatively noise resistant method in comparison 
to more primitive region encoding and feature matching methods. A downside is the 
computational demands of the method, especially in the light that for most 
applications it is not a metric [Fagin and Stockmeyer, 1998] and therefore difficult to 
index and search using metric-based methods [Chávez, Navarro, Baeza-Yates and 
Marroquín, 2001]. In online handwriting recognition, where the concept of an ideal 
template is not as attractive as in pen-gesture recognition, elastic matching has mostly 
been replaced by statistical data-driven methods [Tappert, Suen and Wakahara, 1990; 
Plamondon and Srihari, 2000]. 

For general pen-gesture recognition, elastic matching can be transformed into a linear 
matching function (no stretching necessary) by resampling both patterns to contain 

  
 



88 Discrete and Continuous Shape Writing for Text Entry and Control 
 

the same amount of equidistant-spaced points. The advantage by first resampling both 
patterns is that the comparison between the patterns is linear in relation to the number 
of sample points instead of quadratic. This form of “zero look-ahead elastic 
matching” is the foundation for the shape channel and shape distance function defined 
later in this chapter. 

4.3 Continuous Shape Writing Recognition 
This section describes two technical solutions to recognize continuous shape writing. 
The writing in this chapter is focused on principles rather than implementation. 

First, it is important to keep in mind that many different methods can be used to tackle 
the fundamental problem of continuous shape writing recognition. As an example, 
consider the perhaps most obvious method: record all letter keys crossed by the user’s 
pen trace (in sequence). Now use a lexicon to look up all words that can be formed 
inside this letter key sequence (first and last letter keys must be present in the word) 
and rank them according to their frequency in a large corpus. Return the highest 
ranked word as the best match. Such an approach works if the lexicon is small. 
However, consider the fragileness of the method. First, the user must articulate the 
pen-gesture over the letter keys that comprise the intended word. This essentially 
changes shape writing into traditional software keyboard typing. The only difference 
is that the user slides the pen from letter key to letter key instead of tapping with the 
pen. Second, consider what happens if the user unintentionally slides across an 
unintended letter key. In such case, the user might get a completely different word 
because the unintended letter key will contribute to the search for the best matching 
word. For example, in Figure 4.3 the pen trace is geometrically more similar to white 
but the simplified recognizer could just as well recognize the pen trace as wire. 
Clearly, a more sophisticated approach is required for continuous shape writing to be 
viable. 

 

Figure 4.3. The pen trace intersects the valid letter key combinations 
white and wire. 

From a strictly theoretical point-of-view all possible letter key combinations that form 
words or parts of valid words can be captured in a probabilistic model. Given 
evidence such as for example the user’s pen trace and previously written words the 
recognizer infers the user’s intended word from this model and a model of the user’s 
language. 
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Theoretically, many well-known approaches such as linear discriminant functions and 
neural networks, etc. can be applied to the problem. See Duda et al., 2001 for an 
extensive review of statistical classification methods. 

In practice a probabilistic model is impractical to build. First, there are thousands of 
possible words. Second, continuous shape writing is a novel text entry method and 
unlike handwriting there does not exist a “right” way to write with continuous shape 
writing. Therefore there is a bootstrap problem – to be able to record pen trace data 
from users a shape write a system must be built. However, without any training data, 
how can a reliable recognition system be constructed? 

4.3.1 Multi-Channel Recognition 

One novel solution is to use a multi-channel architecture where each channel does not 
necessarily have the discriminative power on its own, but the collective power of two 
or more channels can separate the ideal shapes of words. 

The multi-channel approach is based on the following observations. First, shape alone 
cannot discriminate among thousands of words in the lexicon. This is further 
supported later in this chapter. Second, location information, i.e. where the user’s pen 
gesture is located on the software keyboard, can be used to discriminate among words 
that are close in shape alone. 

Shape and translation comparisons are different and need to be combined into a single 
confidence score. Figure 4.4 illustrates the overall workflow with the channel 
architecture. This process is known as “combining classifiers” or “sensor fusion” in 
the pattern recognition community [Xu, Krzyák and Suen, 1992]. 

shape

translation

input confidence
scorefusion

          sampling              feature analysis       integration               scoring  

Figure 4.4. The recognition process for continuous shape writing. 
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4.3.1.1 Shape Channel 

The shape channel analyzes a user’s unknown pattern (the user’s pen trace) against a 
template pattern (the ideal shape of a word on a software keyboard layout). At an 
early stage the shape channel used elastic matching. However, it was discovered that 
sufficient shape information is obtainable by a simpler distance measure dubbed 
proportional matching. 

The proportional matching cost between an unknown pattern u  and a template pattern 
 is defined as: t

 ∑
=

−=
n

i
iiS tux

1

 (4.5) 

where  is the total number of sampling points in an individual pattern. It is easy to 
see that elastic matching with zero look-ahead reduces to Equation 

n
4.5. Before 

applying Equation 4.5 the patterns are normalized in scale and translation. 

Normalization in scale is achieved by scaling the largest side of the bounding box of a 
pattern to a pre-determined length  l : 
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where  and  are the original width and height of the bounding box. Normalization 
in translation (location) is achieved by translating the patterns’ geometric centroids to 
the origin in the coordinate system. 

w h

The final result of the shape channel is an approximate scale and translation invariant 
distance measure of the similarity between the patterns, based on the average sum of 
the corresponding equidistant sample points’ spatial distance. 

4.3.1.2 Location Channel 

Shape alone cannot discriminate sufficiently among tens of thousands of word shapes. 
Therefore a second channel is introduced that examines where on the software 
keyboard the unknown pattern is positioned. The rationale for having such a channel 
is twofold. First, location information provides increased recognition accuracy. 
Second, location is part of the user’s memory of the shape for a word and therefore 
will be reproduced during pen-gesture articulation. 

Table 4.1 lists how many words in a lexicon consisting of 20,000 words that are 
completely identical in shape (scale-translation independent spatial similarity). With 
the QWERTY keyboard layout 7.3% of the words’ shape representations are identical if 
only shape is considered. With the ATOMIK keyboard layout 5.6% are identical in 
shape. 
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Table 4.1. Completely confusable word pairs on the QWERTY and ATOMIK 
software keyboard layouts when varying shape and location features 
are considered. The lexicon contains 20,000 words 

Features QWERTY ATOMIK 
Shape 1461 1117 
Shape and start 609 519 
Shape and end 589 522 
Shape and both ends  537 493 

   
Therefore the location algorithm computes the distance of the unknown input trace  
to the template (ideal) trace t  of word  on the software keyboard (now both  and 

 are absolute).  is defined by the lines connecting the centers of the letter keys that 
constitute . Both u   and t   are re-sampled to a fixed number n  of equidistant 
points. The location channel distance is defined as: 

u
w u

t t
w

  (∑
=

=
n

i
l iix

1
)()( δα 4.7) 

where  is the number of sample points in the patterns. n )(iδ  is defined as: 
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where  is the number of sample points in the patterns and n r  is the radius of an 
alphabetical key. This means that an invisible “tunnel” is formed of one key width 
that contains all letter keys in . A perfect distance score of zero is given when the 
entire gesture input trace  is within this tunnel of . Otherwise, the sum of the 
spatial point-to-point distances is used. In other words, Equations 

w
u t

4.7-4.10 give 
special weight to traces that are contained within the tunnel of radius r  whose path is 
formed by serially connecting all the individual keys used in a word. This was based 
on the observation from actual use that when all letters in a word are traced 
(“tunneling”), one would expect the word to be recognized no matter what the shape 
of the trace is. 
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),1(),( nii ∈α  are weights for different point-to-point distances ( )∑ =
=

n

i
i

1
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 The shape of )(iα can be set in various ways. For example it could be dynamically 
trained through a large amount of data when available. It can also be prescriptively 
set. Currently the system uses a function that gives the lowest weight to the middle 
point, and the rest of the points’ weights increase linearly towards the two ends. This 
is because when producing a pen-gesture it is easier for the user to pay visual 
attention to the beginning and ending points than the rest of the locations. 

4.3.1.3 Channel Integration  

The shape and location channels output distance scores between an unknown pen-
gesture and templates drawn from the lexicon. These distances in the two channels are 
not on a common scale and cannot be directly compared. The issue of multiple 
classifier integration of distances or scores (sensor fusion) is not new in pattern 
classification but is either too general (e.g. majority voting and related methods in 
Duda et al. [2001]) or too specialized to a certain domain (e.g. Xu et al. [1992]). 
Therefore the system uses a devised method specifically for continuous shape writing 
recognition to convert channel distances to a common integration scale. 

As is common in engineering, a reasonable assumption is that the distance from an 
input pen-gesture to the template of the intended word (in either channel) follows a 
Gaussian distribution. In other words, if an input pen-gesture has distance x  to a 
template , the probability of  being the targeted word can be calculated using the 
Gaussian probability density function: 
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where 0=μ  and σ  can usually be obtained through training from large amount of 
data. σ  reflects how sensitive a channel is. For example if σ  equals to one key 
radius, those templates whose distance to the input pen-gesture are greater than one 
key width ( σ2 ) have practically zero probability of being the user’s intended word.  
In the system σ  is used prescriptively as a parameter to adjust the weight of the 
contribution of each channel. The greater σ  is, the more flat the  distribution 
will be, and hence the less discriminatory the channel is when it is integrated with the 
other channels (hence less weight). From the word candidates , the 
marginalized probability of a word   with distance 
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Finally probabilities from both the shape ( sp′ ) and location ( ) channels are 

integrated into a confidence score according to Bayes’ rule: 
lp′
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where and are the probability scores from the shape and location channel 

respectively; and  and  are the sets of word candidates for each channel. 
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4.3.2 Shape-Translation Distance Function 

This subsection and the next introduce an alternative variant of continuous shape 
writing recognition. It was devised based on the following three observations of the 
channel architecture outlined earlier. First, analytically, it is hard to understand what 
parts of the shape and location channels in the channel architecture that exactly 
contribute to a recognition result. Second, the individual σ  parameters for each 
channel are difficult to tweak because of their non-linear effect and resulting 
interaction between the two channels. Third, that distance scores follow a Gaussian 
distribution is an assumption, not a fact. 

The proposed distance function in this subsection is methodologically more intuitive 
than the previously presented channel architecture because measurement and 
integration of shape and translation scores are in the same measurement space. 

The basic assumption is that the similarity distance functions for shape and translation 
in the recognizer are linearly related. Then the fusion of these two functions can be 
defined as a linear combination. 

Consider two patterns X  and  as ordered sequences of equidistant points {  and 

 respectively. In the following discussion 

Y }ix

{ }iy X  will be considered the unknown 

pattern, and Y  will be considered the template pattern. 

Now define the linear similarity distance between two patterns X  and , Y YX = , 

as: 
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where  is the number of distance functions, m ),( yxδ  is a distance function between 
two points, and  is a weighting function. )(iw

Equation 4.14 is a weighted sum of an ensemble of distance functions. The 
measurement space of the distance functions must be the same otherwise the total sum 
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is meaningless as a distance. Note that if all comparisons are zero the distance 
between the patterns is zero. In this case the patterns are considered identical. 

As previously discussed, there are at least two important distance functions needed to 
separate patterns for effective continuous shape writing recognition. The shape 
distance function sδ   measures overall shape similarity between two corresponding 

points in two patterns. The translation distance function tδ   measures the degree of 

separation in location between two corresponding points in two patterns. 

4.3.2.1 Shape Distance Function 

The shape distance function returns a measure that reflects shape similarity between 
two patterns X  and Y  , by measuring the Euclidean distance between two points  

and , , where  is the (equal) number of sample points in the patterns. To 

ensure that 

ix

iy ni ≤<0 n

sδ  and tδ  share a common measurement space the points must be 

normalized into the coordinate system that measures translation distance. In the 
following discussion this space will be called a template normalized space. 

Define an affine transformation matrix  in homogeneous coordinates that 
transforms point  into the local coordinate system of  in such a way that a good fit 
is obtained between 

T
x y

X  and Y . A straight-forward but effective example of such a 
transformation matrix is: 
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where 
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where  refer to the width and height of the bounding boxes of patterns YYXX hwhw ,,,
X  and Y  respectively; and  and  is the distance between the geometric 
centroids (centers of mass) of 

dx dy
X  and Y . 

Other rubber-band transformations are also possible, e.g. shear and rotation. 

Next, define a point  as a column vector in homogeneous coordinates: x
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where x  and  represents the horizontal and vertical components of the point. Then 
the matrix product  is an alibi transformation of the point x  into the template 
normalized space of the template pattern . 

y
Tx

Y

Hence define sδ  as: 

 yTxyx −=),(sδ . (4.18) 

This means that the shape distance similarity function measures the degree of 
similarity between two patterns’ points, where one pattern has been normalized into 
the measurement space of the other pattern. 

4.3.2.2 Translation Distance Function 

Translation distance is defined as: 

 yxyx −=),(tδ  (4.19) 

In other words, translation distance is the Euclidean distance required to move one 
pattern (on a point-to-point basis) into the other pattern’s position. 

4.3.2.3 Shape-Translation Distance 

Combining in shape-translation distance  is then defined as (cf. Equation st 4.14): 
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The contribution of each per-point comparison is controlled by adjusting the 
corresponding weighting function  where )(iw ni K,1=  indexes total YXn ==  

comparisons.  

The weighting scheme enables fine-grained parameter adjustment to recognition. For 
instance to use strictly shape similarity information set 0)( =iwt , to use strictly 

translation information set 0)( =iws , or to let only the first and last vertices 

comparison contribute to translation distance in a comparison between total  
comparisons, set: 

n
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For another example, to achieve a gradient translation distance weighting where the 
first and last translation distance comparisons have maximum contribution, and the 
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contribution decreases linearly from the two ends towards the middle comparison that 
has a weight [ 1,0∈ ]α  define: 
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where , and ni ≤<0
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Figure 4.5 illustrates the resulting weighting scheme in a hypothetical matching 
situation for ten points and 5.0=α . 
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Figure 4.5. A graphical illustration of Equation 4.22.The figure plots 
weight as a function of index. 

4.4 Conclusions 
This chapter has presented and motivated two approaches to recognizing continuous 
shape writing. While there are many possible alternative approaches to continuous 
shape writing recognition the methods outlined here have been implemented and 
tested by users. Further, Experiment 3.2 and Experiment 3.3 verify that recognition 
works well in practice. Future work involves collecting trace data from actual users, 
and investigating if a statistical model, or a combination of a statistical and model-
based method, can improve recognition accuracy.  
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The methods are also suitable for general pen-gesture recognition (simply leave out 
the location channel or the translation distance function), but the effectiveness of the 
recognition algorithms in such applications has not been formally investigated. 
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Chapter 5 

Continuous Shape Writing for Control1

This chapter investigates how continuous shape writing can be used to control 
applications. The implementation of continuous shape writing for control is dubbed 
command strokes. 

5.1 Introduction  
The recurring rise and fall of pen-based computing speaks to both the promise and the 
difficulty of using the pen as the primary interaction device. The current generation of 
pen-based computing devices, including pen-based Personal Digital Assistants 
(PDAs), smart phones and in particular the tablet PCs, are no doubt much more 
advanced in both hardware and software than the early generations of pen-based 
computers. However, it is also evident that in comparison to the desktop or laptop 
computers, today’s pen-based computers still exhibit a large degree of handicap to the 
user. Thinner and lighter hardware will certainly make the Tablet PC ever more 
attractive, but that alone will not suffice. To continue the current cycle of the pen-
computer’s rise, and keep it from falling again, user interface researchers have to 
develop innovative techniques that take advantage of the fluidity and dexterity of the 
pen, while addressing the interaction problems that handicap the user. 

One of the most mundane shortcomings of today’s pen-based computing devices lies 
in issuing commands. Understandably, the basic method of issuing commands on a 
pen-based computer is the same as on a desktop PC: linear and hierarchical pull-down 
menus. The limitations of pull-down menus on desktop computers have long been 
realized [Callahan, Hopkins, Weiser and Shneiderman, 1988]. Pull-down menus are 
much more problematic on a pen-based touch-screen computer for a number of 
reasons. First, the pen (stylus) and its holding hand often obscure the very items on 
the pull-down menu the user needs to find and select. Second, pen motion on a screen 
has to be one-to-one in scale. This is in contrast to other pointing devices—such as the 
mouse—whose control-to-display gain is rate-accelerated (popularly known as the 
power-mouse), so that one does not have to move over a large distance to reach a far-
away menu. Furthermore, moving a pen on the screen is more fatiguing than moving a 
mouse supported on a desktop. 

                                                 
1 This chapter is a revised and slightly extended version of Kristensson and Zhai [2007a]. 
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What comes to linear menus’ rescue on desktop and laptop computers are keyboard 
shortcuts. Frequent commands such as Copy and Paste have de-facto standard hotkey 
shortcuts across software applications. Although the number of shortcuts a user 
remembers might be small, the skewed distribution in use frequency, similar to the 
Zipf’s law [Zipf, 1935] effect in the distribution of word usage in a language, elevates 
the percentage of hotkey use disproportionably. Without a keyboard, these shortcuts 
are often what the user misses the most on a pen-based computer. 

This chapter presents a new and practical command entry technique for pen-
computers called command strokes. Command strokes are pen-gesture traces defined 
on a graphical keyboard according to the letters in the commands, such as c-o-p-y and 
p-a-s-t-e. Command strokes offer users a complementing method of directly selecting 
any command without needing to browse a menu hierarchy. 

The development of command strokes followed an iterative process. An early 
incarnation of the concept was compared with traditional pull-down menus. 
Encouraged by the positive results and informed by the feedback gained from the 
experiment a second iteration of the technique was developed: command strokes with 
preview. 

The structure of this paper reflects the iterative development process: The first part 
presents the initial incarnation of command strokes and its evaluation. The second 
part presents the second iteration of the method and two experiments that investigate 
how the visual preview functionality impacts end-users. Last, the work is compared to 
previous research. 

5.2 Command Strokes 
This chapter proposes to use continuous shape writing as a command entry method. 
The new command entry method is called command strokes, and it is intended to 
complement pull-down menus. Command strokes can be divided into two classes.  A 
short command stroke is a pen-gesture trace from one or more modifier keys, such as 
Ctrl, Alt, Fn, and Shift, to a letter key, corresponding to the physical keyboard hotkey 
combinations. A long command stroke is the pen-gesture trace from a modifier key to 
a sequence of letter keys based on the name of the command.  

5.2.1 Short Command Strokes 

In a traditional desktop environment the user usually selects commands from a pull-
down menu. However, frequently used commands such as Copy and Paste have 
mnemonic key identifiers attached to remind the user of the alternative shortcut 
(Figure 5.1). Physical hotkeys have been directly carried over in today’s tablet PCs, 
where users can tap the hotkeys on a software keyboard. 
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Figure 5.1. Example of commands in a pull-down menu with the 
hotkey assignment shown to the user to the right. 

Short command strokes transform the physical keyboard-based hotkeys to a truly fluid 
pen-based form in order to take better advantage of the natural affordances of the pen. 

As observed in Chapter 3, with continuous shape writing it is not necessary on a 
software keyboard to tap one key at a time in a “chicken head motion” to input 
information. Instead, a command can be recognized as a trajectory pattern on the 
keyboard, see Figure 5.2.  

Q W E R

A S D F

Z X C V

Control Alt

Shift

 

Figure 5.2. The line traces of Ctrl-c and Ctrl-Shift-e as patterns on a 
software keyboard with the QWERTY layout. 

The short command stroke trajectory defines a pattern or pen-gesture. The user’s 
input can be matched against a collection of pen-gesture templates, allowing a degree 
of error tolerance in the interface: a user needs only to draw an approximate pen-
gesture to invoke a specified action, as long as it is closer to the intended pen-gesture 
template than other templates in the database. A novice user starts out by tracing the 
key sequences. Over time, the pen-gesture builds up in the user’s memory and the 
user can quickly flick the pen-gesture without looking much at the keys. The 
technique can be expanded to any arbitrary sequence of keys. For instance, Figure 5.2 
also shows the hotkey trace Ctrl-Shift-e.  
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5.2.1.1 Problems with Short Command Strokes 

Short command strokes, being directly mapped from the physical keyboard hotkeys, 
do have limitations due to this heritage. Hotkey commands typically consist of a very 
short sequence of keys and some are designed to be easily reachable with one hand 
and pressed down simultaneously (e.g. Ctrl+C for Copy). This causes two problems. 
First, very short pattern sequences are much more confusable in the recognition 
process. Second, the pen-gestures of some different commands can be quite similar 
from a user’s point of view. The pen-gestures Ctrl-c for Copy and Ctrl-x for Cut are in 
fact very close to each other (cf. Figure 5.2). 

5.2.2 Long Command Strokes 

Figure 5.3 shows an example of a long command stroke for the action Copy whose 
template starts on Ctrl and intersects the letter keys c-o-p-y in sequence. Since long 
command strokes are richer in shape features, they tend to be more error tolerant than 
short command strokes:  as long as the user’s gesture is geometrically similar to the 
long command pattern, the command can be recognized and executed (see Figure 
5.3). 

Q W E R
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Figure 5.3. The solid lines show the long command stroke for Copy 
The dashed spline shows a user’s actual pen-gesture of the command. 

There are many special design issues that must be solved to make long command 
strokes effective. First, an algorithm needs to be devised that can compute practical 
non-ambiguous long command strokes. Second, recognition accuracy is more 
challenging for commands that originate from the same letter key, than for ordinary 
text writing. Third, long command strokes need to be integrated with continuous 
shape writing for text. Fourth, effective visual interfaces are required. The rest of this 
section discusses these issues in order. 

5.2.2.1 Finding Practical Long Command Strokes 

Articulating full command names is unnecessarily lengthy, and particularly 
impractical for commands with command names that are very verbose, an extreme 
example is Save As Web Page. It is possible to define long command strokes 
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unambiguously by abbreviations or acronyms rather than full names. For example the 
command Track Changes can probably be gestured as Ctrl-t-r-a. This section presents 
an algorithm that systematically finds practical non-conflicting non-ambiguous 
abbreviations and acronyms for a set of command names.  See Figure 5.4 and the 
Visual Feedback subsection later in this section on how the user can know these 
shorter alternatives. 

Let  be the working set of command names initialized to a set where all command 

names are strings of only two symbols, e.g. the command name Copy is reduced to 
Co;  is the set of command names that are confusable, i.e. easily misrecognized 

due to close neighbors in the recognition space, and 

WΩ

CΩ

Γ  is the set of shortest non-
ambiguous versions of the command names that are accumulated so far. The 
algorithm returns this set together with the command names that could not be further 
expanded. 

 
function FIND-SHORTEST-COMMAND-NAMES 

WΩ   shortest desired initial command names ←

CΩ  ←  GET-COLLISIONS ( ) WΩ
Γ   ← CW ΩΩ -  
while (  and CAN-EXPAND-NAMES?(∅≠ΩC CΩ )) do 
      EXPAND-NAMES (WΩ ← ∪Γ CΩ ) 
      GET-COLLISIONS ( ) CΩ ← WΩ
      Γ ← CW ΩΩ -  
end-while 
return  CΩΓ∪

 

Although the term “command name” is used for ease of presentation, when 
implementing the algorithm a “command name” ω  is represented as a data structure 

>< σ,,, ML sXs , where  is a string naming the command, Ls X  is the pattern of the 

command on the keyboard,   is the minimized version of the command so far, and Ms
σ  is a flag having the value TRUE if the command name can be further grown, and the 
value FALSE otherwise. The algorithm repeatedly alternates between expanding the 
command names with conflicts (i.e. easily confusable by the recognizer) and re-
computing new collisions. When there are no more collisions, or when there are 
collisions but the command names that have collisions cannot be further expanded, 
the algorithm halts and outputs the smallest command names that could be found 
along with the command names  (if any) that could not be expanded. 

The function GET-COLLISIONS returns the set of command names that have a conflict 
with at least one other command name (collision set). Two command names 1ω  and 
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2ω  are included in the collision set if it is true that γωω <),( 21C  where  is a 
similarity function. Here 

C
γ  is a threshold set by the system designer that is 

empirically determined. The value of the similarity function  is zero if  and  

are identical and increases monotonically as 

C 1ω 2ω

1ω  and 2ω  become more dissimilar. 

The function CAN-EXPAND-NAMES? ensures the algorithm halts on all inputs. Without 
this predicate in the conditional loop, the algorithm would loop indefinitely if the set 
of collisions  contained command names that could not be further expanded. CΩ

The function EXPAND-NAMES returns a set containing expanded command names 
drawn from . This function can be designed in many interesting ways. The 

simplest design handles the case of one word command names such as Copy and 
Save. In this case EXPAND-NAMES is designed to expand the command names 
gradually with one additional character at a time. In the case of command names that 
contain multiple words, such as the very verbose Save As Web Page, EXPAND-NAMES 
is designed to try to gradually expand one of the words in the sequence by one 
additional character. The word that is expanded in the sequence alternates between 
different calls to EXPAND-NAMES, e.g. the command Save As Web Page may 
gradually grow from SA to SAWP to SaAWP to SaAsWP. Many different schemes are 
possible. For example, another expansion technique could be to ignore vowels except 
in the beginning and only keep consonants, e.g. the command Insert can be grown 
from In to Ins to Insr. If the algorithm is used unsupervised a filter is probably needed 
here to make sure any particularly undesirable words are removed from consideration. 
It is important to note that a command name as long and complex as Save As Web 
Page is an extreme example of a command name, used here for demonstration 
purposes of the algorithm. In practice, it is expected that the vast majority of the 
commands being flicked as command strokes are more frequent and have much 
shorter names, such as Search, Print, Save, Copy, etc. To be more effective, the 
frequent commands in an application should be run against the algorithm first. Then, 
having assigned as short and non-conflicting command names as possible to these 
commands, the algorithm can be applied to the rest of the command corpus in the 
application, in consideration of the precedence already taken by the frequent 
commands. 

CΩ

5.2.2.2 Increasing Accuracy in Recognition 

A potential problem with long command strokes can occur if all commands are 
triggered by the same command initiator key. The continuous shape writing 
recognition engine uses two sources of information, shape and location, to infer the 
pen-gestures that are the best matches in the database (see Chapter 4 for more details). 
Both the shape and location represent the input pen-gesture as a series of ordered two-
dimensional sample data points. For regular continuous shape writing the system 
assumes the most informative parts of the user’s pen stroke is the beginning and end 
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segments, hence weighting the beginning and ending sample points more than the 
ones in the middle. However, when all commands are initiated from a small set of 
modifier keys (e.g. Ctrl, Alt, etc.) this is no longer true. For this reason the continuous 
shape writing recognition module is modified to enter a special command detection 
mode when recognizing long command strokes (the pen traces started on a modifier 
key). In this mode, the recognition process discards the first segment connecting the 
modifier key to the first letter key in the matching process. For example, if the user’s 
pen trace is compared against the long command stroke template Ctrl-c-o-p-y the 
recognizer only compares the segment of the user’s gesture corresponding to c-o-p-y, 
discarding the segment corresponding to Ctrl-c. 

5.2.3 Detection of Command Strokes 

An important aspect of command strokes is the trigger mechanism. If command 
strokes are used in conjunction with an ordinary software keyboard, command strokes 
and text input are easily separated. Since gesturing with a pen is a distinctively 
different event from tapping, users won’t accidentally invoke commands when 
entering text. 

If command strokes are used in conjunction with continuous shape writing text entry, 
the separation of commands and text input has to be carefully considered. Since a 
command stroke always starts from a function key, its shape and location is not likely 
to be the same as the geometric pattern of a regular word on the keyboard. This means 
that the two systems can simply be mixed. However the drawback of this approach is 
that it will be less tolerant to user’s sloppiness / flexibility in articulating commands 
or ordinary text. 

A more conservative method is to require command strokes to start from within the 
modifier key (such as Ctrl), which can be enforced by visual feedback.  This method 
can clearly separate commands from text, giving the user more flexibility since the 
system will only search either the command set or the word lexicon. Although it is at 
the cost of requiring the user be more precise on the starting point of a command 
gesture, this method is currently preferred. 

5.2.4 Visual Feedback 

Since command strokes are recognition-based, it is important to inform users of the 
end result with visual feedback. Therefore visual feedback is integrated with the 
command stroke system. The visual feedback serves two purposes. First, the activated 
command is immediately displayed to the user. Second, the feedback also reveals the 
shortest unambiguous acronym in a distinct color. This allows a novice user who 
gestured Ctrl-c-o-p-y for Copy to realize that it is also sufficient to gesture Ctrl-c-o-p 
(see Figure 5.4). 
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Figure 5.4. The system has recognized the command Copy and 
overlays it on the keyboard. The shortest acronym the user has to 
articulate is drawn in a distinct yellow color. 

5.2.4.1 Resolving Ambiguity 

A small number of command strokes may still be close to each other in shape and 
location after the algorithm outlined earlier in this chapter has found appropriate 
command names. To reduce possible user frustration, the system presents multiple 
candidates overlaid on the keyboard if there is more than one close match to the user’s 
gesture (Figure 5.5). The user can either look at the alternatives to get a grasp of the 
commands available, or simply point or cross the desired alternative. 

 

Figure 5.5. The user has entered Ctrl-s-a and system returns three 
possible choices: Save (Ctrl-s-a-v), Save As Web Page (Ctrl-s-a-s-w-p) 
and Save As (Ctrl-s-a-a-s). The user can select the desired command 
by tapping or crossing a selection and learn the SHARK commands for 
future use. 

5.3 Experiment 5.1: Error and Response Time 
There are many issues with command strokes that can be studied. The first experiment 
focused on a few basic questions: Can command strokes offer any performance 
advantage to complement the linear menus that is the de-facto standard technique for 
entering commands on a tablet PC or PDA today? What are the quantitative tradeoffs 
between short command strokes and long command strokes? Which technique do 
users prefer? 
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5.3.1 Method 

5.3.1.1 Design 

In the experiment participants used a stylus to enter various commands in three 
conditions: 

1. Linear menu. The participants entered commands by selecting them in a linear 
menu. 

2. Short command stroke. The participants entered commands by gesturing their 
short command stroke, e.g. Ctrl-c for Copy. 

3. Long command stroke. The participants entered long command strokes, e.g. 
Ctrl-c-o-p for Copy. 

The order of the three conditions was balanced among the participants in this within-
subject experiment. With each condition the participants entered 10 (trials) X 5 

(command types) = 50 commands.  The trials were randomly shuffled within each 
condition so the participant could not predict which command would appear before 
the trial starts. The participants were told to rest whenever they wanted between trials.  

5.3.1.2 Participants 

12 volunteers were recruited for participation in the experiment. Their ages ranged 
between 20 and 50. 

5.3.1.3 Apparatus 

The experiment was conducted on a 1 GHz tablet PC with a 12" TFT display with 
1024 × 768 pixel resolution. The test software was written in Java but the look and 
feel of the linear menus was set to the standard Windows XP look and feel which is 
used on the tablet PC in other applications (see Figure 5.6). 

5.3.1.4 Material 

Shown in Table 5.1, the five types of commands tested in the experiment were drawn 
from the File, Edit, View and Tools menus in Microsoft Word 2002. We choose to 
resemble MS Word because it is a commonly used application. All participants had 
experience in using the pull-down menus in MS Word. All menu items assigned with 
hotkeys by MS Word default in these four menus were inserted into the lexicon of 
patterns the system could recognize.  

The long command strokes’ abbreviations were generated by hand before the 
algorithm was developed since this study was conducted in parallel to, and in fact 
informed, the system development. 
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Table 5.1. The commands used in the study. 

Command Short Long 
Copy Ctrl-c Ctrl-c-o-p 
Print Ctrl-p Ctrl-p-r-i 

Thesaurus Ctrl-t Ctrl-t-h-e 
Track Changes Ctrl-Shift-e Ctrl-t-r-a 

Find Ctrl-f Ctrl-f-i-n 
 
In the linear menu condition, the commands Copy and Find were located in the Edit 
menu, Print in the File menu, Track Changes in the Tools menu and Thesaurus in the 
Language submenu in the Tools menu. Since our keyboard software did not 
implement the function keys the Thesaurus hotkey was changed from Shift-F7 to Ctrl-
t, which is in fact more memorable. Even though the hotkeys were taken from MS 
Word, Copy, Print and Find share hotkeys common to all MS Windows applications. 

The selection of these five types of target commands in the study was biased in favor 
of the traditional pull-down menus. Only one of the five target commands was located 
in a submenu which obviously was more difficult to reach in the pull-down menu 
condition. Command strokes in contrast are not hierarchical so a submenu item in a 
pull-down menu is not necessarily more difficult for command strokes. In comparison 
MS Word 2002 by default contains 117 top-level menu items and 136 submenus item 
(56 in the AutoText sub-menu). Even more items are located at sub-menu levels in an 
Integrated Development Environment (IDE) such as Eclipse where a large number of 
frequently used commands such as Indent Text are located in submenus. 

5.3.1.5 Procedure 

As shown in Figure 5.6, to start a new trial the participant had to click on the CLICK 

FOR NEXT COMMAND button which brings out a new target command in the top panel 
of the experiment software. The participant then entered a command as fast and as 
accurately as possible. The command received by the software was displayed in the 
third panel. If a wrong command was entered the trial had to be repeated until the 
correct command was entered. Incorrect entries (and their repeated trials) did not 
contribute when we calculated the reaction and total time. 

In addition to a brief introduction and explanation of each technique in the beginning 
of the experiment, the participants were given a “cheat sheet” (a reminder table) in all 
conditions to glance at in case they forgot how to do a particular command for the 
given condition. For example for the command Copy on the reminder table was “In 
Edit” in the linear menu condition, “Ctrl-c” in the short command stroke condition, 
and  “Ctrl-c-o-p” in the long command stroke condition. 
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Figure 5.6. The software interface in the short command stroke task. 
The panels at the right display (from top to bottom): the command the 
user should enter, the number of trials left in the current condition, 
the command received from the user, whether the received the 
command was correct, a button that the user must click to start the 
next trial.  

5.3.2 Results 

5.3.2.1 Selection Time 

Selection time was defined as the time from the user clicking on a menu to selecting 
(and lifting the pen) in the linear menu condition, and the time from the user presses 
the pen onto the stylus keyboard surface to lift it up in the command stroke 
conditions. Figure 5.7 shows the successful selection time with each of the three 
methods as a function of the trial number. Repeated measure variance analysis shows 
that the selection time difference between the three methods was statistically 
significant (F2, 22 = 99.9, p <.0001). Post hoc tests indicate all pair wise comparisons 
were significant (p < .0001). Clearly selection time decreased with practice (Figure 
5.7, F9, 99 = 23.7, p <.0001) but the differences between the three methods remained 
very large. Taking the average of the last four trials as example, short command 
strokes and long command strokes were 3.8 and 1.6 times faster than the pull-down 
menu method respectively. 
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Figure 5.7. Mean and 95% confidence interval of selection time (in ms) 
of the three methods as a function of trial number. 

There was a significant interaction between different commands and the three 
methods (F8, 88 = 39.38, p <.0001, Figure 5.8).  In particular, although the linear menu 
was slower with all commands tested, it was particularly slow with Thesaurus, which 
was a nested sub-menu item (Tools-Language-Thesaurus). 

Menu
Long
Short

Copy
Find

Print
Thesaurus

Track Changes

0

500

1000

1500

2000

2500

3000

3500

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

 

Figure 5.8.  Selection time (ms) of the three methods and different 
commands. 
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The distances needed for the pen to travel (ideal traces) in the study are shown in 
Table 5.2. As a reference, the distance from the CLICK FOR NEXT COMMAND button in 
the test application to the Ctrl key on the keyboard was 382 pixels (measured between 
the centers of the buttons, Figure 5.6). Assuming that the user moves the pen at the 
same average speed (and excluding the initial movement from the CLICK FOR NEXT 

COMMAND button to the Ctrl key or the menu bar), short command strokes should be 
1.4 times faster than linear menu, and linear menu should be 1.6 times faster than long 
command strokes. However, in fact long command strokes were 1.6 times faster than 
linear menu. Clearly movement distance is not a determinant of selection time 
between the three techniques.  

Table 5.2. The ideal pixel distances for each command and task in the 
study. 

Command Menu Short Long 
Copy 78 91 298 
Print 258 277 587 

Thesaurus 379 145 313 
Track Changes 137 150 256 

Find 217 115 297 
Average 213.8 155.6 350.2 

5.3.2.2 Reaction Time 

Reaction time was defined as the time duration from the moment a new target 
command was presented to the moment of the first stylus contact with the pull-down 
menu or the stylus keyboard. Since occasionally the participants could be distracted or 
wanted to ask questions during this period, resulting in excessively long reaction time, 
these cases were truncated (two cases) at 32,676 ms, which was the largest number 
the statistics software could accept. 

There was no statistically significant difference between the three methods in reaction 
time (F2, 22 = 0.35, p = .71). Reaction time decreased significantly with practice (F9, 99 

= 20.9, p <.0001) particularly at the first two trials, and eventually stabilized at or just 
below 2000 ms. It is interesting to note that although novel to the participants, the 

command stroke methods did not take longer for the user to get to action than the 
linear pull-down menus. 

Although the magnitude was small, there was a significant difference in reaction time 
between the commands (F4, 44 = 2.88, p = 0.03) and this difference did not interact 
with the methods significantly (F8, 88 = 2.02, p = 0.054).  Fisher’s PLSD post hoc tests 
show the only significantly different pair wise comparison is between Copy and Track 
Changes ( p  = 0.02). It took somewhat longer for the user to decide what to do with a 
rarer and complex command such as Track Changes.  
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5.3.2.3 Total Trial Time 

Total trial time was the sum of reaction time and selection time, from the moment a 
new target command was presented to the moment the system received a command.  

Repeated measures variance analysis show that total trial time difference between the 
three methods was also statistically significant (F2, 22 = 21.57, p <.0001). Post hoc 
tests indicate all pair comparisons were significant (p < .0001). Total trial time also 
decreased with practice (F9, 99 = 23.69, p <.0001) particularly during the first two 
trials. 

The average total time of long command strokes was similar to that of the linear menu 
in beginning, but decreased two about two thirds of it. The differences between the 
three methods were quite large after the initial progress. Taking the average of the last 
four trials as example, short command strokes and long command strokes were 1.8 
and 1.3 times faster than pull-down menu method respectively. 

It is remarkable that the linear menu used in the experiment whose layout and 
components were identical to Microsoft Word hence should be familiar to most of our 
participants 1), still progressed significantly during the first few trials; 2), was still 
much slower than command strokes both in selection time and total time. 

5.3.2.4 Error 

The error rates were 2.8% for pull-down menus, 6.5% for short command strokes and 
3.5% for long command strokes. Repeated measures variance analysis shows that 
error rate differed significantly across methods (F2, 22 = 6.12, p = .0077). 

Fisher’s PLSD post hoc tests indicate that short command strokes were significantly 
more error prone than long command strokes and linear pull-down menus (p <.05) but 
the difference between long command strokes and linear menus was not significant 
(p= .64). 

Note that (Figure 5.9) when selecting a sub-menu command (Tools-Language-
Thesaurus), linear menu was no better than short command strokes and worse than 
long command strokes in error rate.  Note also that the error rate of long command 
strokes was comparable or better than linear menu except in the case of the Print 
command.  This was because another command in the lexicon, Go To (Ctrl-g-o-t-o), 
forms a similar pattern as Print (Ctrl-p-r-i) on the QWERTY layout. The solution is to 
make Print more unique by expanding it with one additional letter, resulting in Ctrl-p-
r-i-n. This result initiated the development of the algorithm that finds practical non-
ambiguous command names, presented earlier in this chapter. 
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Figure 5.9. Error rates (%) in different conditions. 

5.3.2.5 User Ratings 

No participants preferred linear menus and they all consistently rated linear menus as 
the most physically demanding technique. Five participants preferred long command 
strokes, five preferred short command strokes, and two stated that they preferred 
different modes for different situations, using short command stroke for very frequent 
actions such as Copy, and using long command strokes for less frequent commands. 
When asked for their reasons to prefer a specific technique, participants who preferred 
short command strokes said they were already familiar with the typing pattern of 
traditional hotkeys. Participants who preferred long command strokes stated better 
accuracy in recognition and / or the ease of remembering the commands as the main 
reason for preference. 

5.4 Command Strokes with Preview 
Although command strokes were rather successful in Experiment 5.1, through the 
experiment and additional informal user testing it was realized that novel, interesting 
and possibly advantageous improvements could be made. The result of the second 
design iteration is command strokes with preview. 

5.4.1 Basic Idea 

The overall goal in command stroke with preview is to give the user more flexibility 
and more certainty when using command strokes. For flexibility, each command can 
be entered with as long as, or as short as, a stroke on its complete path (e.g. 
Command-C, Command-c-u or Command-c-u-t can all do Cut), as long as the stroke 

  



114 Discrete and Continuous Shape Writing for Text Entry and Control 

is unambiguous to the pattern recognizer. Consequently command stroke with 
preview effectively merges short and long command strokes. For certainty, the system 
displays what the command would be (a preview, see Figure 5.10) if the pen would be 
lifted from the current location. Through testing it was discovered that it is better to 
display a preview only if the stroke movement is relatively slow. 

5.4.1.1 Example 

Suppose the user wants to issue the command Copy. The user starts by landing the 
pen on the Command key, and then drags it to the first letter key in the command, in 
this case the c key. Since Command-c matches another command (Cut) that is shorter 
and / or more frequently used, Cut is now previewed (Figure 5.10 top). Other 
commands that also match the sequence Command-c, in this case Copy, Close and 
Comment, are shown in a list of alternatives to the left of the center panel. To enter 
Copy the user either quickly slides the pen towards Copy in the leftmost box (see the 
Quick Pick subsection below) or continues to gesture towards the second letter key o. 
Since Command-c-o matches Copy the command Copy is now previewed (Figure 5.10 
bottom). When the user lifts up the pen the Copy command is issued. It is important to 
remember that command stroke with preview still uses a pattern recognizer. For 
instance if the user is gesturing a pen trace geometrically close to Command-p-r-i the 
command Go To could appear instead because from the pattern recognizer’s point-of-
view Command-g-o-t-o is very similar to Command-p-r-i. 

5.4.2 Cancellation 

An important feature when previewing is the ability to cancel the gesture. By 
dragging and releasing the pen over the semi-transparent cancellation icon (see Figure 
5.10) the current gesture is cancelled and no command is executed. 

5.4.3 Dynamic Visual Preview 

An important design goal was to make preview as unobtrusive as possible when the 
user already knows the gesture for a command. Therefore pattern recognition and 
subsequent visual preview is only triggered if the user moves the pen slower than an 
empirically determined threshold. In the implemented system any movement slower 
than 2.5 letter keys per second triggers pattern recognition and visual preview. This 
check is performed by the system every 20 ms (50 Hz). 

5.4.4 Quick Pick 

Any commands shown in the alternative list to the left of the center panel (Figure 
5.10) can be directly selected by quickly dragging the pen towards the command 
name. The system can unambiguously separate pen-gestures from alternative list 
selections since once the pen tip leaves the keyboard area the articulation does not 
constitute a valid pen-gesture. Since movement dynamics is taken into account when 
deciding if pattern recognition and update of the preview should be performed, the 
alternative list will not suddenly change despite the user gesturing over the keyboard 
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while heading towards the desired command. This functionality worked very well in 
practice, as shown in the results later. 

An important aspect of all user interfaces is behavioral consistency. For this reason it 
is also possible to “quick pick” the currently previewed command (e.g. Cut in Figure 
5.10 top). In other words, either lifting the pen from its current location or dragging 
the pen to the preview box results in the same command. 

 

 

Figure 5.10. When the user gestures Command-c the command Cut is 
previewed (top). When the user gestures Command-c-o Copy is 
previewed (bottom). 

5.4.5 Disambiguation 

Some applications have many commands that start with the same letters. For instance, 
in MS Word Cut, Copy and Comment start with the letter c. When the system detects 
such a conflict a disambiguation procedure is invoked. First the system checks if any 
command has priority. For instance, if Copy is used more in the active application 
than Cut (as determined by the user’s actions in the system) then Copy will be shown 
as the primary command previewed. If two commands have been used the same 
number of times the system prefers the shorter command, in this case Cut. 
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5.4.6 Conceptual Advantages 

5.4.6.1 What You See Is What You Get 

Preview allows the user to be certain about what command will be executed. This 
alleviates the fear of unintentionally invoking irreversible commands. 

5.4.6.2 Minimizes User Effort 

For many commands, one or two letters in a command would uniquely differentiate it 
from other commands. However without preview it is impossible for the user to 
discover the minimum number of letter keys needed for a given command without 
trial-and-error. With preview the user can learn the shortest path needed without the 
frustration of trial-and-error, hence the amount of motor effort needed in articulating 
the gestures is reduced. Command stroke with preview therefore gracefully and 
flexibly merges short and long command strokes. 

5.4.6.3 Encourages Exploration 

Without preview the user would need to try out commands to see if they existed in the 
active application. With preview frequently a command will appear either in the 
preview or in the alternative list after only one or two letters of the command is 
gestured. For instance, if the user gestures Command-s the command Save is likely 
shown in preview or in the alternative list along with the other best matching 
commands. If it is not, the user can continue gesturing on the path Command-s-a-v-e 
and the system will display Save in preview or in the alternative list at some point as 
long as Save is a valid command. If Save is still not displayed when the complete path 
of Command-s-a-v-e is finished, the user would know that Save is not available in this 
particular application. During this exploration the user can always stroke to the 
cancellation icon to abort the procedure and prevent an unintended command (if 
currently previewed) from being executed. 

5.4.6.4 Reveals the Space of Possible Commands 

A problem with the first iteration of command strokes is discovery support: how does 
a user know the space of available commands except by consulting co-existing pull-
down menus (which most likely exist due to legacy compatibility) or the application 
help system first? With preview, some commands other than the intended one will 
inevitably be shown in the preview or the alternative list while the user is gesturing. 
This increases the likelihood that the user notices other available commands. For 
instance, if Print is gestured as the sequence Command-p-r, Properties might appear 
as the next best matching command, informing the user that this command is available 
in the active application. 

5.4.6.5 Benefits the Novice and the Expert 

Since command stroke with preview considers the movement dynamics of pen-
gesturing, a true expert that knows how to quickly articulate the commands will not 
be disrupted with any visual feedback. If a user writes an unfamiliar command the 
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natural slowdown of the pen motion causes preview to be automatically displayed, 
aiding novices and experts alike on just how much of the command stroke path needs 
to be completed for the command to be accurately recognized. Furthermore, if an 
expert user is very certain of a command stroke, the preview display can be ignored, 
reverting back to basic command strokes behavior.  

5.5 Experiment 5.2: Preview Performance 
While there are many conceptual advantages with preview as outlined above which 
motivated the development of the technique, there are also concerns of possible 
adverse effects of preview. For example the display of preview could be distracting or 
over-demanding on the user’s visual attention and therefore significantly slow down 
input speed and / or inflicting a higher error rate. Clearly an empirical study was 
needed to reveal any measurable performance impact of preview, particularly an 
adverse performance impact if any.  Note that not all of the conceptual advantages 
outlined above, such as the ability to explore and discover, should necessarily result in 
measurable performance differences.  

5.5.1 Procedure and Design 

16 volunteers were recruited for this within-subject experiment. None of them had 
participated in Experiment 5.1. The experiment was carried out on a Fujitsu-Siemens 
tablet PC with a screen set to landscape orientation and with a screen resolution of 
1024 × 768 pixels. The QWERTY keyboard layout was used for the software keyboard. 

In the experiment participants used a stylus to enter commands in one of two 
conditions: 

1. No Preview. The participant entered commands with the preview interface 
(preview, alternative list and cancellation icon) disabled. When the participant 
lifted the pen the recognized command was displayed above the keyboard. 

2. Preview. The participant entered commands with the full implementation of 
the preview interface as described earlier. 

The experiment simulated realistic document editing in which commands were 
interleaved with common word processor (MS Word) tasks. The goal was to be able 
to observe and measure both speed and error of the two versions of command strokes. 
Two task scripts and instructions were developed so that the second condition would 
not repeat the same script. The system was made to work with real applications in MS 
Windows. For example, a part of the first script read: “Scroll down to the bottom of 
the document. Invoke Paste.” If the participant correctly activated Paste the contents 
of the clipboard would be pasted into the active document. All 114 commands in MS 
Word 2002 available in the main pull-down menus (e.g. Open, Paste, etc.) and all 
other menu items that had an assigned hot key (e.g. Thesaurus, Visual Basic Editor, 
etc.) were implemented and could be recognized by the experimental system. 10 
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commands were used in the first script: Open, Properties, Copy, Paste, Select All, 
Word Count, Date and Time, Undo, Track Changes, Print and  10 in the second 
script: New, Styles and Formatting, Symbol, Paragraph, Font, About Microsoft Word, 
Versions, Page Setup, Break, Close. 

If a user made a mistake in following the instructions, the user was asked to repair the 
mistake. For example, if the user accidentally executed the command Styles and 
Formatting to the word processor, the user was asked to close the panel that appeared. 

After a brief demonstration of the system the participant was asked to follow one of 
the scripts with preview either disabled or enabled. After the script had been repeated 
10 times, the participant was asked to follow a second script and test command 
strokes with the condition. The order of the two methods and the two scripts were 
balanced among the participants. 

5.5.2 Results 

5.5.2.1 Error 

The average error rate with the Preview condition (7.5%) was lower than with No 
Preview (11.3%). However the difference was not statistically significant (F1, 15 = 2.0, 
p = .178). 

5.5.2.2 Selection Time 

Selection time was calculated as the time duration from pen-down to pen-up when 
articulating a correctly recognized command gesture. Repeated measures variance 
analysis showed that the difference in selection time was not statistically significant 
(F1, 15 = 0.207, p = .656), see Figure 5.11. There were considerable individual 
differences in performance. For instance, the fastest participant had an average 
selection time of 1126 ms with Preview and 1583 ms with No Preview while the 
slowest participant had an average selection time of 2451 ms with Preview and 3900 
ms with No Preview. 
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Figure 5.11. Mean and 95% confidence interval of selection time (ms) 
as a function of trial number. 

5.5.2.3 Trial Completion Time 

Trial completion time was defined as the time taken to complete one repetition of one 
of the scripts with 10 commands. Average trial completion time was 105.2 seconds 
with the No Preview method and 105.6 seconds with Preview. The difference was not 
statistically significant (F1, 15 = 0.004, p = .952). 

5.5.2.4 Trace Lengths 

Trace length, the distance the pen traveled over the keyboard, was measured in 
multiples of key width. If only the minimum paths were articulated, the average trace 
length of the commands tested would be 9.0 keys.  If the complete paths were 
gestured the average trace length of the tested commands would be 27.3 keys. The 
results showed that the traces in the Preview condition were significantly shorter (10.7 
keys) than the traces in No Preview (15 crossed keys). The 40% difference was 
statistically significant (F1, 14 = 31.7, p <.0005). Evidently participants took advantage 
of the visual feedback and did not over-specify the gestures much. 

5.5.2.5 Quick Pick 

In Preview two participants used quick pick almost exclusively (96% and 93% of the 
responses respectively). One participant used quick pick ¼ of the time. The other 
participants used quick pick considerably less (0-5%). Pearson’s r showed no 
significant correlation between quick pick usage and error rate (r = -.139, n = 16, p = 
.608, two-tailed). 

  



120 Discrete and Continuous Shape Writing for Text Entry and Control 

5.5.2.6 User Ratings 

After each condition participants were asked to rate their confidence on a 1-7 scale (1 
= “Very unconfident”, 7 = “Very confident”), and after the experiment they were 
asked to rate their preference of each method on a 1-7 scale (1 = “Strongly dislike it”, 
7 = “Strongly prefer it”). Friedman’s repeated measures non-parametric test showed 
that neither confidence (χ2 = 2.273, df = 1, p = .132) nor preference (χ2 = 2.571, df = 
1, p = .109) varied significantly between the methods. 

The comments from the participants in the study were positive towards both 
interfaces. One participant declared “Wow! This is amazing! How can it know what I 
want to write?” One participant that really liked the preview version stated that 
“without preview I felt unsure if I was doing the right thing. With it enabled I felt I 
was guided [by it]” (translated from Swedish). 

In summary, Experiment 5.2 did not show any adverse effect with command stroke 
with preview. It also revealed that participants could take advantage of some features 
of command stroke with preview, such as using quick pick and taking a shorter stroke 
path due to the guidance of the preview display. On the other hand, when the same 
task procedure was repeated in succession as in this experiment, hence intensifying 
the participants’ familiarity with the sets of command strokes to an “expert” level, 
neither speed nor accuracy was significantly different between the two conditions. A 
hypothesis is that users might take greater advantage of the preview functions when 
they encounter commands that are new or unfamiliar, which frequently happens in a 
real use situation. 

5.6 Experiment 5.3: New Commands 
A follow-up study was conducted with the same participants as in Experiment 5.2 to 
investigate how users familiar with the technique tackle new commands they have not 
previously gestured – with and without preview. 

5.6.1 Procedure and Design 

The same 16 participants in Experiment 5.2 were recruited the week after to take part 
in Experiment 5.3. They were asked to enter commands in one of two conditions: 
Preview or No Preview with the same properties as described in Experiment 5.2. 

Two sets of 10 commands were used. The sets of commands and the experimental 
order of the two conditions were balanced. The commands were randomly chosen 
from MS Word with the constraint that they had not been previously used in 
Experiment 2. The commands in the first set were: Fullscreen, Office Clipboard, 
Table AutoFormat, Macros, Theme, Text Box, Borders and Shading, Drop Cap, Word 
Perfect Help, Ruler, and in the second set: Object, Thesaurus, Draw Table, Reveal 
Formatting, Office on the Web, Heading Rows Repeat, Hide Gridlines, Bullets and 
Numbering, Find, Paste as Hyperlink. 
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In one condition the participants entered all commands from a first set of commands 
and repeated the set once again. If a mistake was made the participants were asked to 
try again. Next the procedure was repeated in the other condition with the second set 
of commands. 

5.6.2 Results 

5.6.2.1 Error 

Error rate differed dramatically between the conditions with average error rates as low 
as 1% in both trials in the Preview condition (Figure 5.12) but on average 10.5% in 
the No Preview condition. Repeated measures variance analysis showed that the 
difference in error rates between the conditions were statistically significant in the 
first trial (F1, 15 = 8.99, p < .01) as well as in the second (F1, 15 = 9.22, p < .01). The 
results show that users benefited from preview when executing unfamiliar command 
strokes. 
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Figure 5.12.  Mean and 95% confidence interval of error rate (%) as a 
function of trial number. 

5.6.2.2 Selection Time 

There was no significant difference found in selection time (as defined in Experiment 
5.1) in either trial 1 (F1, 15 = 2.815, p = .114) or trial 2 (F1, 15 = 3.624, p = .076), see 
Figure 5.13. The slower selection times compared to the ones in Experiment 5.1 and 
Experiment 5.2 are not surprising given that the majority of the commands tested in 
this experiment were longer and less frequently used. 
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Figure 5.13.  Mean and 95% confidence interval of selection time (ms) 
as a function of trial number. 
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Figure 5.14. Mean and 95% confidence interval of trace length (in key 
widths) as a function of trial number. The dashed bottom and top 
reference lines indicate the minimum and maximum possible trace 
length. 

5.6.2.3 Trace Lengths 

The trace lengths (as defined in Experiment 5.2) in Preview condition were 
significantly shorter than in No Preview condition in both trial 1 (F1, 15 = 25.043, p 
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<.0005) and trial 2 (F1, 15 = 25.671, p <.0005), see Figure 5.14. Clearly visual preview 
aided the participants in gesturing shorter command strokes. 

5.6.2.4 User Ratings 

After Experiment 5.3 the participants were asked which method they preferred and 
why.  All participants preferred the Preview method. When asked to explain their 
preference all participants stated that with the Preview method they knew when they 
could stop and lift up the pen. One participant stated that dyslexia made it difficult for 
him to spell out the commands without visual guidance. 

In summary, Experiment 5.3 clearly demonstrated the advantage of command stroke 
with preview when dealing with unfamiliar commands, as indicated by shorter stroke 
path and higher accuracy. 

5.7 Discussion 
Experiment 5.1 showed that both short and long command strokes are significantly 
faster than pull-down menus. Between the two, short command strokes were faster but 
more error prone than long command strokes. Short command strokes based on 
traditional keyboard shortcuts are only applicable to menu items that have a keyboard 
shortcut assigned, whereas long command strokes can be applied to all commands in 
an application. Long command strokes should also be easier to remember and use, 
since they are based on the name of the command instead of a randomly assigned 
keyboard sequence such as Ctrl+Y for Redo. 

With the preview display, command stroke with preview simultaneously takes 
advantage of both short and long command strokes. Command stroke with preview is 
still based on command name traces on the keyboard, but with the visual preview the 
user knows how much of the entire trace needs to be gestured for a command to be 
recognized. Experiments 5.2 and 5.3 showed that users’ trace lengths were 
significantly shorter when using preview (also Figure 5.14). 

A critical concern with visual preview is whether it demands so much visual attention 
that it interferes with expert users’ speed performance. Experiment 5.2 showed that 
the command stroke with preview mechanism, which was carefully designed not to 
distract fast users, did not impede users’ performance for well practiced familiar 
commands. For unfamiliar commands tested in Experiment 5.3 the visual preview did 
not only leave participants’ speed performance unchanged, but also significantly 
reduced error rates. Overall, the experiments show that visual preview has real 
significant benefits and does not slow down input speed. 

5.8 Related Work 
Many researchers have previously tackled the pen-based command selection problem. 
For instance, Kobayashi and Igarashi [2003] demonstrated a technique that makes 
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pull-down menu traversal easier when navigating through sub-menus, and 
Kurtenbach, Fitzmaurice, Owen and Baudel [1999] have developed a technique called 
Hotbox which combines linear, radial and pop-up menus to create a graphical user 
interface that can handle a large number of commands for the Maya modeling 
application. 

Pie menus have been demonstrated as a competitive alternative to pull-down linear 
menus [Callahan et al., 1988]. Marking menus, studied and advocated by Kurtenbach, 
Sellen and Buxton [1993], further improve pie menus.  Embodying a critical thought 
in user interface design, marking menus are pie menus augmented with a pen-gesture 
recognizer that encourages behavior transition from novice to expert use. Novice 
users select items in the pie menu structure as if using a regular pie menu (with 
delayed display). Over time, users learn the angular pen-gestures for selecting a 
command. This allows expert users to quickly flick the pen-gesture of the command 
without needing to visually traverse a pie menu hierarchy. To encourage users to learn 
the fast mode of gesturing commands instead of using slower visual feedback-based 
navigation, marking menus do not “pop-up” until after a time delay. A problem with 
marking menus observed by Zhao and Balakrishnan [2004] is that some selections are 
ambiguous when marks are articulated independent of scale. Zhao and Balakrishnan 
[2004] investigated the use of consecutive single line marks instead of compound 
marks in marking menus and found that single line marks are unambiguous and more 
compact. However, it remains an open question whether users will memorize a 
sequence of disconnected single line marks as easily as compound marks that can be 
perceived and remembered as a whole. Another variant of the marking menu is 
FlowMenu [Guimbretière and Winograd, 2000]. Originally made for wall-sized 
displays, FlowMenu combines the Quikwriting text entry method [Perlin, 1998] with 
marking menus. Although a practical method for many specialized applications, the 
down-side of the method is that the pen-gestures are long and complicated. 

The contrast between command strokes and marking menus is interesting and 
multifaceted.  First, marking menus replace linear menus while command strokes are 
designed to co-exist with or complement linear menus. With command strokes 
interfaces, the user can use the traditional pull-down menus to explore the existence of 
certain functions or commands (although with command stroke with preview one can 
also often discover command strokes by trying out tracing the letters of a command 
and observe the visual preview) but rely on command strokes to efficiently evoke 
known commands. Second, the learning mechanisms in the two systems are different. 
In command strokes the user incrementally learns the pen-gestures on the software 
keyboard with use, starting by slowly tracing the keys with visual guidance then, over 
time, gradually (partially) transitioning into open-loop gesturing by recall. The 
software keyboard is always present as a visual map. In contrast, using the marking 
menu novice-expert bridging technique, the transition is binary – either selecting with 
the displayed (and delayed) menu hierarchy or gesturing the mark without any visual 
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assistance. This may force the user to memorize the gesture faster at the cost of 
reduced novice performance due to the delay. On the other hand, marking menus have 
a relatively easy transition from browsing commands via the displayed menu to 
selecting commands by pen-gestures. In this regard, command strokes requires an 
additional conscious step by the user to transition from menu browsing to pen-
gesturing command strokes, although the visual preview system in command stroke 
with preview may encourage exploration.  

In comparison to all menu selection methods, one advantage of command strokes is 
consistency. Commands tend to be named in a similar manner in all user interfaces 
but are often placed differently in menu structures, shifting locations from application 
to application. Hotkeys for the same function can also vary between applications. The 
flat hierarchy with command strokes allows hundreds of commands to be specified 
directly by the user rather than being accessed from browsing a hierarchy. Large 
capacity in a small space is another advantage with command strokes. Since a stylus 
keyboard does not require much screen estate, command strokes can be used in 
specialized domains, such as Unmanned Aerial Vehicle (UAV) control [Quigley, 
Goodrich and Beard, 2004], where a large number of commands need to be entered on 
a size-constrained handheld computer. 

Another class of command articulation techniques is free-form pen-gestures, such as 
the Rubine recognizer [Rubine, 1993]. Free-form pen-gestures are often “arbitrary” 
pen-gestures that denote different actions in a user interface. The similarity aspects of 
pen-gestures have also been studied [Long, Landay, Rowe and Michiels, 2000]. In 
general, free form pen-gestures are limited in the number a user can remember and 
reproduce, due to their arbitrary definition to the user. In contrast to free-form pen-
gestures, command strokes use the keyboard as a mnemonic map. 

It is clear that each technique has its own pros and cons. Users are familiar with pull-
down menus and they are backwards compatible with virtually all existing desktop 
and mobile programs. Special techniques such as the Hotbox [Kurtenbach et al., 
1999] can be used when an application needs to provide access to over 1,000 
commands but it takes a large amount of screen space. Free-form pen-gestures are 
most advantageous in application domains that have a strong convention, such as 
copy editing, or in places where pen-gestures can be highly metaphorical, such as 
crossing a series of words to cause the words to be deleted. 

5.9 Conclusions 
Based on the conceptual analysis and the empirical studies presented in this chapter, it 
is expected that command strokes can be a very useful complement to pull-down 
menus in future mobile computing devices. Pull-down menus tend to be slow and 
tedious, but offer an effective way for the user to discover the commands available in 
an application. Users will continue to use pull-down menus to access a large number 

  



126 Discrete and Continuous Shape Writing for Text Entry and Control 

of infrequent functions. For a known command, particular frequently used commands 
such as Cut, Copy, Paste, Find, and Print, Command strokes provide fast, fluid and 
convenient access when used in conjunction with a software keyboard. Experiment 
5.1 shows that on average command strokes can be much faster than pull-down 
menus, particularly if the commands are located in sub-menus. In the first experiment 
a speed-accuracy trade-off was found between long and short command strokes. The 
latter is faster but more error prone. Command strokes were further developed with 
preview which conceptually could improve certainty, reduce effort, and encourage 
exploration and command discovery. Empirically command stroke with preview 
proved capable of reducing users’ gesture lengths without impacting speed or 
accuracy for familiar command strokes (Experiment 5.2) For unfamiliar commands, 
preview dramatically reduced error rate (Experiment 5.3). These results indicate that 
as long as the input interface does not force users to look at the visual feedback, high 
input speed and low error rates can be obtained even though visual feedback is 
introduced that guides novice users towards the expert mode. 

 



Chapter 6 

Design Dimensions of Mobile Text Entry 

This chapter serves as a literature review typically found in a doctoral dissertation. 
This review is usually placed in the beginning of a dissertation. However, the area of 
text entry is so diverse in conceptualization and as a result the traditional order of a 
literature review would be distracting to the flow of this thesis. Note also that each 
individual chapter has reviewed prior work most relevant to the build-up of the 
content to that chapter,  

Furthermore, this chapter is also more than a literature review in that it aims at 
outlining the design dimensions of mobile text entry. It identifies and analyzes the 
most important design dimensions in mobile text entry methods. The design 
dimensions selected are: entry rate, error, learning curve, immediate efficacy, form 
factor, preparation time, localization, comfort, user engagement, visual attention, 
cognitive resources, privacy, single vs. multi-character entry, specification vs. 
navigation, one-handed vs. two-handed, task integration, robustness, device 
independence, computational demands, manufacturing cost, support cost and market 
acceptance. 

The selection of and these design dimensions grew out of an extensive literature 
review and personal experiences in developing and analyzing text entry methods. The 
goal is to understand the entire space in mobile text entry method. Of course, this is 
impossible to achieve and I have almost certainly missed some design dimensions 
crucial for future text entry inventions. However, by an honest attempt in distilling the 
design dimensions relevant to mobile text entry as we know it today, the aim is to let 
the readers with varying degree of expertise in the area a sense of wide spectrum of 
requirements, limitations and tradeoffs that are explicitly or implicitly considered by 
mobile text entry method researchers and developers today. By putting all design 
dimensions involved in the spotlight my hope is to provide a framework that both 
guides the conception of new text entry methods, and help the research community in 
judging them for their merits. 

An overview of existent mobile text entry approaches and an analysis of their typical 
performance are necessary to motivate and illustrate these design dimensions. 
Therefore this chapter begins with a survey of mobile text entry methods. There 
already exists surveys on mobile text entry (e.g. [MacKenzie and Soukoreff, 2002a; 
Isokoski, 2004a; Wobbrock, 2006]). In relation to these, this chapter’s survey is 
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primarily designed to introduce a context for a discussion and analysis of the general 
design dimensions of mobile text entry that are often implicit in the body of previous 
text entry research. 

The remainder of this chapter is structured as follows. The first section introduces 
basic concepts used in mobile text entry research. The second section surveys a wide 
array of mobile text entry methods. The third section describes and analyzes the 
design dimensions of mobile text entry. The forth section selects a subset of mobile 
text entry methods and compares them against each other from the perspectives of the 
design dimensions that were previously described and analyzed. The last section 
concludes. 

6.1 Introduction 
The metrics most commonly used in the literature are entry rate (also referred to as 
input rate, text entry speed, text entry speed, input speed, speed) and error rate (also 
referred to as error, or accuracy [accuracy = 1 - error rate]). I have opted to try to list 
both novice and expert users’ entry rates if available.  Of course, both the concepts of 
a novice and an expert are relative. For example, operationally, novice entry rate can 
be defined as the entry rate achievable within 2-35 minutes by participants in a 
controlled experiment, whereas expert entry rate can be defined as the rate achievable 
after several sessions. The definitions for novice and expert entry rates are 
deliberately loose because there has been no consensus in the literature on 
experimental setup and procedure in text entry evaluation. Also note that the term 
error rate has different meanings in different research papers. 

Text input performance evaluation inevitably involves empirical experiments. Text 
entry research experiments can be divided into three common classes of experimental 
setups. 

In the first experimental setup, participants are not allowed to make any errors, i.e. 
participants are forced to write a completely correct sentence in order to proceed to 
the next. In this case the term error rate is unambiguous and refers to the number of 
errors participants made and corrected in the text entry process. Therefore this error 
rate unambiguously refers to corrected errors. In this chapter, if researchers who have 
conducted this type of experiment report an error rate it will be clearly marked as an 
error rate related to the number of corrected errors.  

In the second experimental setup, participants are allowed to make errors but 
explicitly denied to the ability to correct their errors. Here error rate unambiguously 
refers to uncorrected errors. This is a problematic choice of experimental setup 
because entry rate is inflated by uncorrected errors and there is no telling how many 
errors participants would choose to correct if given the chance.  
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In the third experimental setup, participants are allowed to make errors but are given a 
chance to correct their errors. In this case the term error rate can mean two different 
things because there are two categories of errors: corrected errors that the participants 
discovered and corrected, and uncorrected errors that the participants did not discover 
or made an effort to correct. The two types of errors have different or even opposite 
effects on entry rate. As a speed-accuracy trade-off, one may gain higher entry rate by 
making more errors and leaving them uncorrected. The corrected errors, however, are 
subsumed in the entry rate because the time participants were required to devote to 
correct these errors decreased the entry rate. However, some researchers report error 
rate with this experimental setup as “total error rate” [Soukoreff and MacKenzie, 
2003b]. Total error rate combines both corrected and uncorrected errors into one error 
rate. By doing so the error rate becomes an uninformative number in relation to entry 
rate because it is impossible to know from the total error rate if entry rate was inflated 
at the cost of an increased number of uncorrected errors. The opposite effect is also 
possible, entry rate can be held back by users correcting many errors. 

It is methodologically more principled to force participants to correct all errors to 
proceed. By forcing users to correct errors, entry rates obtained with different text 
entry methods can be directly compared because error correction is subsumed into 
entry rate. Intuitively, such an approach also makes sense because in reality errors are 
unavoidable and error correction is an integral part of the text entry process (in fact a 
good text entry system should make error-correction as easy as possible). However, 
psychologically it can be frustrating to users to be forced to correct all errors and it 
has often been criticized as “artificial”. This is probably the reason most text entry 
research experiments do allow errors. 

If some errors are left uncorrected, it is unclear how error and entry rate are related in 
terms of a speed-accuracy tradeoff curve. In fact, the shape of the speed-accuracy 
tradeoff curve in text entry is currently unknown and could vary significantly between 
different text entry methods. This means that two methods A and B with 
simultaneously different entry rate and error rate cannot be easily evaluated. Suppose 
A has a higher entry rate and a higher error rate than B. It is not possible to know if A 
would still have a higher entry rate if its error rate were held the same as B’s error 
rate.  Text entry is an extremely complex process to study through controlled 
experiments. As a comparison, the much simpler process of pointing modeled by 
Fitts’ law has a speed-accuracy tradeoff curve that is still debated in the literature 
[Zhai, Kong and Ren, 2004]. For these reasons it may well be necessary for all text 
entry experiments to adopt the first type of set-up (all errors are highlighted and have 
to be corrected to proceed) so their results can be compared in the future.  However 
the research field has not come to an agreement on this matter. 

Finally, many factors other factors also affect the entry and error rates reported from 
an experiment. Factors include participants’ age, motor skill [Rosenbaum, 1991], 
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motivation, the mechanical properties of the device used, text used, the instructions 
given to the participants, users’ native language [Isokoski and Linden, 2004] etc. For 
these reasons text entry methods’ entry and error rates, unfortunately, are typically not 
comparable unless the entry and error rates were measured in the same controlled 
experiment. 

6.2 Overview of Mobile Text Entry Techniques 
This section surveys exiting text entry methods. They have been broadly partitioned 
into the following categories: physical keyboards, projection keyboards, tilt-based text 
entry, software keyboards, handwriting recognition, speech recognition, prediction, 
abbreviation, artificial alphabets, word-level single-stroke encoding, and hierarchic 
text entry methods. 

Because there is an enormous amount of mobile text entry methods proposed this 
section will only list a select subset and makes no effort to be complete. 

From here on, in this overview, the unqualified term error rate means the uncorrected 
error rate 

6.2.1 Physical Keyboards 

6.2.1.1 Foldable Keyboards 

A foldable keyboard (e.g. [Coulon and Malhi, 1996]) is a portable version of a 
desktop keyboard (typically using the de-facto standard QWERTY layout) that can be 
folded into two or three pieces. A foldable keyboard has capability to yield the same 
performance as a desktop keyboard – at the cost of portability and form factor. A 
foldable keyboard also requires the user being able to sit down next to a table or other 
flat surface in order to be effective. To my knowledge no empirical investigations of 
foldable keyboards have been carried out. An advantage with foldable keyboards is 
that users are probably already familiar with QWERTY touch-typing. On the other 
hand, users who cannot touch type on QWERTY only reach 20 wpm after 12 hours of 
practice [Noyes, 1983]. 

6.2.1.2 Stick Keyboards 

Green, Kruger, Faldu and St. Amant [2004] presents a “stick keyboard” where the 
standard QWERTY keyboard is compressed into a single home row. E.g. the letter key 
A contains all the Q/A/Z keys. To disambiguate between the possible letters each key 
users can either type the key multiple times to cycle through the letters, or activate 
lexicon lookup mechanism where the keyboard attempts to disambiguate among the 
letter key combinations. If the desired letter does not show up the user needs to 
navigate among the next best choices with dedicated buttons. Novice users quickly 
reach around 22.5 wpm with the “stick keyboard”, reaching around 40% of their 
desktop keyboard speed, which was used as a baseline reference [Green et al., 2004]. 
Error rates were not reported. 
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6.2.1.3 Chording Keyboards 

Chording is a technique that several keys can be depressed simultaneously to yield 
characters (similar to the chords when playing piano). In an influent work on chording 
Gopher and Raij [1988] indicates that a chording alternative to typewriting can result 
in faster skill acquisition than traditional QWERTY typing for users unskilled in touch-
typing. 

For mobile text entry the half-QWERTY keyboard [Matias, MacKenzie and Buxton, 
1996] is a straight-forward implementation of a minimal chording keyboard. The 
traditional QWERTY keyboard is split in half hence reducing the physical size of the 
keyboard by a factor of 2. To access keys on the left hand side of a regular keyboard 
the user presses the keys on the half-QWERTY as usual. To access the keys on the right 
hand side of a regular keyboard the user presses the space bar while simultaneously 
pressing the intended letter key. Matias et al. [1996] reports that after a 50-minute 
session novice users typed with an average entry rate of 13.2 wpm. Matias et al. 
[1996] allowed errors but participants were not allowed to correct errors. The 
uncorrected error rate was 15.16%. After 10 50-minute sessions participants reached 
an average entry rate of 34.7 wpm and an average uncorrected error rate of 7.36%. 

Another chording keyboard is twiddler. Twiddler is held with the user’s dominant 
hand. The user enters text by pressing one or more keys simultaneously using the 
fingers on the dominant hand.  Lyons, Starner and Gane [2006] shows novice users 
reaches around 6 wpm with a 10% error rate after 90 minutes of typing. After 13 
hours of practice users reached an average entry rate of 37.3 wpm and 6.2% average 
error rate. Note that the error rates reported are “total error rates” [Soukoreff and 
MacKenzie, 2003b] that lumps together both uncorrected and corrected errors by 
users. Since the uncorrected error rate is not reported it is impossible to judge how 
much uncorrected error rates contributed to the entry rate. 

Rosenberg and Slater [1999] and Mehring [2005] present variants of a chording 
keyboards designed for VR (virtual reality) environments. In both implementations 
the user wears special gloves or skeletal-structures on the hands. 

In the system proposed by Rosenberg and Slater [1999] contact points are present on 
each finger tip. Modifier keys are present on the part of the index finger that is closest 
to the thumb. By pressing the thumb against the modifier keys the user can change the 
current key-assignment for the finger-tips’ contact points. The user generates key 
strokes by pressing down finger tips simultaneously. After an initial practice session 
users typed with an average entry rate of 8.9 wpm and an average error rate of 27%. 
After 10 50-minute sessions the final average entry rate was 16.8 wpm and the final 
average error rate was 17.4%. It is unclear in Rosenberg and Slater [1999] whether 
error rate refers to corrected errors, uncorrected errors, or both. 
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In the system presented in [Mehring, 1999] each finger tip is equipped with an 
electronic contact point each, and the thumbs are equipped with 3 contact points. To 
type, the user moves a finger tip to contact with a contact point on the thumb (of the 
same hand). For instance, to type the letter a the user moves the tip of the left little 
finger to the center contact point of the left thumb. The mapping between finger tip 
and contact position on the thumb is designed to resemble the QWERTY keyboard 
layout to ease transfer of touch-typing skills. Kuester, Chen, Phair and Mehring 
[2005] presents the results of a preliminary evaluation of the method in comparison to 
touch-typing with a traditional keyboard. Average typing speed was 4 wpm 
(calculated from data reported in Section 5.2 in Kuester et al. [2005]), with a 79% 
error rate. It is unclear in Kuester et al. [2005] whether error rate refers to corrected 
errors, uncorrected errors, or both. 

A technology that is very close to the same idea as what is presented in Mehring 
[2005] and Kuester et al. [2005] is the FJGK (finger-joint gesture keypad) [Goldstein, 
Baez and Danielsson, 2000]. With the FJGK the user can input keypad information 
(e.g. numeric input) by pressing the thumb tip against the 3 different segments on 
each finger. For instance, to type the number 1 the user presses the right thumb tip 
against the top segment of the right little finger. Goldstein, Baez and Danielsson 
[2000] reports an average recognition rate of 78% with the FJGK. To my knowledge 
no empirical evaluation of the technique’s performance has been conducted. 

6.2.1.4 Thumb Keyboards 

Thumb keyboards are essentially desktop keyboards shrunk down to fit the form 
factor of a handheld computer, smart phone or large conventional mobile phone 
(Figure 6.1). The device hosting the thumb keyboard is held with both hands. The 
user enters text by moving the thumbs concurrently on the left and right hand sides of 
the keyboard. From at least a strict performance point-of-view, there are reasons to 
believe that thumb keyboards can be quite effective for a skilled touch-typist. First 
and foremost the QWERTY keyboard distributes frequent letter pairs to the left and 
right hand side of the keyboard. With a thumb keyboard the user can move the second 
thumb into position concurrently, while the first thumb is pressing the first key in a 
letter pair. Second, novice users typing on a thumb keyboard benefit from skill 
transfer from touch-typing on a regular keyboard which should improve novice users’ 
performance. On the other hand, the small packed keys may also feel difficult, 
uncomfortable or clumsy to type on. 
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Figure 6.1. A thumb keyboard. The keys have a diameter of 8 mm. 

Theoretical thumb keyboard performance models based on concurrent movement of 
the left and the right thumb, Fitts’ law [Fitts, 1954] and a character-level bigram 
model predict average expert entry rates of 60.51 and 60.74 wpm [Clarkson, Lyons, 
Clawson and Starner, 2007; MacKenzie and Soukoreff, 2002b]. In an empirical 
experiment novice users reached an average entry rate of 31.72 wpm and an average 
error rate of 6.12% after the first 20 minute session. After 20 20-minute sessions 
participants reached an average entry rate of 60.32 wpm and an average error rate of 
8.32% [Clarkson, Clawson, Lyons and Starner, 2005]. However error rates were 
reported as “total error rate” [Soukoreff and MacKenzie, 2003b] that lumps together 
both corrected and uncorrected errors. Therefore it is impossible to know if 
uncorrected errors affected entry rate, and if so, to what degree. 

There appears to be a relationship between the size of the thumb keyboard and entry 
rate. Clarkson et al. [2005] compared two different thumb keyboards of different sizes 
and found a statistical significant difference. The larger thumb keyboard was faster 
[Clarkson et al., 2005]. A related study by Curran, Woods and Riordan [2006] reports 
that novice users entering four phrases of varying difficulties had an average entry 
rate of 14.36 wpm for a large thumb keyboard attached to a flip-up personal 
organizer, and 8.05 wpm for a thumb keyboard attached to a smaller handheld 
computer. In a controlled study Roeber, Bacus and Tomasi [2003] found that 
participants had an average entry rate of 27.6 wpm and an average error rate of 2.2% 
when typing the pangram “The quick brown fox jumps over the lazy dog” repeatedly 
for 2 minutes. This is similar to the level of performance as reported in Experiment 
3.2 in this dissertation, in which the participants typing on a thumb keyboard reached 
an average entry rate of 29.6 wpm and an error rate (uncorrected errors) of 1.3% after 
35 minutes of practice, which is slower than Clarkson et al. [2005]. However, it is 
unclear in Roeber et al. [2003] whether error rate refers to corrected errors, 
uncorrected errors, or both. 

In summary, thumb keyboards can be quite fast, at least based the experimental data 
typically contributed by young adults. Novice users can reach an average entry rate 
around 30 wpm. After many sessions of practice users can reach an average entry of 
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60 wpm [Clarkson et al., 2005]. Since Clarkson et al. [2005] only reports total error 
rate it is impossible know how high the uncorrected error rate was. 

Thumb keyboards have the downside that they require a relative large portion of the 
mobile device devoted to typing. Persons with larger thumbs or reduced motor control 
ability may also have trouble with precise typing because the thumb can easily hit a 
key adjacent to the intended key by mistake.  

6.2.1.5 Keypads  

Mobile phones usually have a physical telephone keypad in close proximity to the 
screen. Due to the small size of a mobile phone, and the legacy of touch-tone phones, 
the key set is reduced, see Figure 6.2. Since the mapping from the telephone keypad 
keys to the Latin alphabet is one-to-many an alternate mapping scheme between the 
user and the computer has to be used. The most common mapping scheme is known 
as multi-tap (sometimes called multi-press, e.g. in Isokoski [2004a]). To multi-tap the 
user repeatedly presses a keypad button to cycle through the valid key states for the 
button. For instance, to type the character a the user presses the 2ABC button once, to 
type b the user presses the 2ABC button two times and thereby cycles to next key state, 
from a to b (Figure 6.2). A result of this input scheme is that the user’s intention when 
a key is pressed is ambiguous. A user can either intend to cycle to the next state of the 
key, or intend to input a new character. To disambiguate between these actions a 
timeout is used. If the user presses a key before the timeout, the key press is 
interpreted as an intention to cycle to the next key state. Otherwise, the key press is 
interpreted as inputting a new character. 

Two factors limit multi-tap performance. First, multiple key presses are required to 
type a majority of the characters. Second, the timeout disambiguation mechanism 
forces users to wait unnecessary long to repeatedly input characters assigned to the 
same key. If a timeout is not used users must press an auxiliary key to signal that the 
next letter will be inputted. 
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Figure 6.2. The ISO/IEC 9995-8:1994 standard telephone keypad 
layout. 

In addition, the standard telephone keypad is not designed to overcome these 
limitations because the characters are distributed among the keys based on the 
standard ISO/IEC 9995-8:1994 alphabetic convention (see Figure 6.2). Expert keypad 
performance can be theoretically modeled by a Fitts’ law [1954] movement model 
and a character-level bigram model [Silfverberg, MacKenzie and Korhonen, 2000]. 
Silfverberg et al. [2000] estimates the theoretical expert speed of multi-tap to 25 wpm 
for one-handed thumb input and 27 wpm if the two index fingers are used. The 
estimate is made on the assumption that timeout is not used and users explicitly 
specify when the next letter will be inputted. If timeout is used the estimates should be 
reduced by 4 wpm [Silfverberg et al. 2000]. Pavlovych and Stuerzlinger [2004] 
presents a theoretical model of novice performance with multi-tap that predicts 
average novice entry rate to be 6.53 wpm. James and Reischel [2001] conducted an 
experiment where participants were divided into experts and novices depending on if 
they had used text messaging before or not. Participants wrote four sentences from 
newspaper corpora. Novice users reached an average text entry of 5.59 wpm with 
multi-tap while expert users reached an average text entry rate of 5.33 wpm. 
Unfortunately James and Reischel [2001] reports absolute errors and not error rates. 
This study was replicated by Butts and Cockburn [2002] who found that multi-tap 
with timeout resulted in an average text entry rate of 6.4 wpm, and multi-tap with a 
NEXT key instead of timeout resulted in an average text entry rate of 7.2 wpm. The 
error rate is not reported. 

A variation of multi-tap is to re-arrange the letter ordering on each key to minimize 
the average number of key presses for words [Pavlovych and Stuerzlinger, 2003]. 
Pavlovych and Stuerzlinger [2004] estimates novices users’ average text entry rate to 
be 6.53 wpm. In a controlled experiment comparing this method against multi-tap a 
9.5% increase in entry rate was observed. Novice users typing for 20 minutes reached 
an average entry rate of 6.8 wpm with multi-tap in comparison to 7.2 wpm when 
letters were re-arranged on each key. Users that typed 40 minutes (grouped in 2 
sessions) reached an average entry rate of 7.4 wpm with multi-tap in comparison to 
8.0 wpm with letters were re-arranged (these numbers are estimated from Figure 6 in 
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[Pavlovych and Stuerzlinger, 2003]). Error rates for both techniques were consistently 
< 1% (see Figure 7 in [Pavlovych and Stuerzlinger, 2003] for details). It is unclear in 
Pavlovych and Stuerzlinger [2003] whether error rate refers to corrected errors, 
uncorrected errors, or both. 

Another variation of multi-tap is to re-arrange the distribution of letters on the keypad 
while maintaining alphabetic ordering. For example, the keypad key 5JKL can be 
changed to 5MN. Gong and Tarasewich [2005] uses a computational model to derive 
such a keypad design that minimizes the average number of key presses required to 
compose words. Their evaluation shows that novice users that reached an average 
entry rate of 7.89 wpm with a re-distributed keypad in comparison to 8.22 wpm for a 
traditional keypad after one session. It should be noted that in this comparison the 
novice users had already been exposed to typing with re-distributed keypad in one 
earlier session (comparing two different designs of re-distributed keypads). 
Unfortunately the time durations for the sessions are not reported in Gong and 
Tarasewich [2005]. The errors are reported in a non-standard format as the number of 
times the user pressed the BACKSPACE key per sentence. Novice users pressed 
backspace 0.47 times when using a re-distributed keypad and 0.42 times when using a 
traditional keypad. 

Smith and Goodwin [1971] realized that for many words multi-tap is highly 
redundant. Not all key combinations on a keypad are legitimate words in a language. 
The few letter combinations that do form valid words can be captured in a dictionary. 
For instance by typing the keys 2ABC, 6MNO and 3DEF in sequence, the system can 
recognize that among the possible letter combinations (for example amd, and, anf, 
bmd, etc.) that the word and is most likely the intended word. Such a system is called 
a dictionary-based disambiguation method. 

Several methods and strategies have been proposed in the literature. Smith and 
Goodwin [1971] propose the perhaps earliest known method. Other methods such as 
Tegic Communication’s (now a subsidiary of America Online Inc.) T9, ezText and 
Motorola’s iTap have been licensed to mobile phone manufacturers and used in 
commercial products. Silfverberg et al. [2000] estimates expert performance to 41 
wpm when a single thumb is used, and 46 wpm if both index fingers are used. 
However this assumption is based on a perfect disambiguation algorithm, which is 
never the case in practice. The unavoidable error correction process involved in the 
input process is not modeled or taken into account. Pavlovych and Stuerzlinger 
[2004]’s model predicts novices to reach an average entry rate of 7.58 wpm. James 
and Reischel [2001] conducted an experiment where participants were divided into 
experts and novices depending on if they had been text messaging before or not. 
Participants wrote four sentences from newspaper corpora. Novice users reached an 
average text entry of 7.21 wpm while expert users reached an average text entry rate 
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of 15.0 wpm. Unfortunately James and Reischel [2001] reports absolute errors and not 
error rates. 

LetterWise [Gutowitz, 2001] is another alternative to multi-tap. LetterWise uses a 
statistical model to predict the user’s intended letter when the user presses a key. The 
statistical model is composed of a set of prefix substrings of the most common words 
in the language. The difference between LetterWise and dictionary-based methods is 
that LetterWise does not rely on a dictionary which means the user can always type a 
word even if the word is not explicitly modeled by the language model. LetterWise 
attempts to guess the current key press immediately, in comparison to dictionary-
based methods such as T9 that treats each key press as a step towards the completion 
of a word. If the user does not see the intended letter with LetterWise the user presses 
a NEXT key until it appears.  In an empirical experiment, participants typing with 
LetterWise achieved 7.3 wpm in comparison to 7.2 wpm with multi-tap after 25-30 
minutes [MacKenzie, Kober, Smith, Jones and Skepner, 2001]. The error rate was 
7.6% for LetterWise and 5.5% for multi-tap (these numbers are estimated from Figure 
7 in MacKenzie et al. [2001]). After 20 25-30 minute sessions participants reached 21 
wpm with LetterWise in comparison to 15.5 wpm with multi-tap. The uncorrected 
error rate after session 20 was 6% for LetterWise and 4.2% for multi-tap (these 
numbers are estimated from Figure 7 in MacKenzie et al. [2001]). Participants were 
not allowed to correct their errors in MacKenzie et al. [2001]. A possible downside of 
LetterWise is the unintuitive process that decides which letter will be outputted when 
the user presses a key. Because the letter that will be outputted depends on previous 
writing the letter ordering on the keys no longer match. Gong, Haggerty and 
Tarasewich [2005] presents an extension of LetterWise where the next letter key is 
highlighted on the keyboard (implemented as a software keypad). Gong et al. [2005] 
reported error rate in a non-standard format as the number of times participants 
pressed the BACKSPACE key. Their evaluation shows a significant 42% reduction in 
error rate (BACKSPACE key presses) in comparison to LetterWise without highlighting 
[Gong, Haggerty and Tarasewich, 2006].  

Another method of text entry using key pads is known as the “island technique” 
[MacKenzie and Soukoreff, 2002a]. The process of entering a letter using the island 
technique is partitioned into two separate steps. One step is a selection step where the 
user presses the key that contains the intended letter (among others). The other step is 
a disambiguation step where the user presses a key to indicate the specific letter 
intended.  

The implementation and order of these steps can be varied according to several 
different strategies. In one strategy the letter groups are defined by partitioning the 
letters according to their ordinal position on the keys [Detweiler, Schumacher and 
Gattuso, 1990]. Using this strategy the first input step is to press the key that contains 
the desired letter. The second input step is to press a key that specifies the ordinal 
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position of the intended letter. For example, the top row with the 1, 2ABC and 3DEF 
keys specifies the first, second and third ordinal position respectively. As an example, 
pressing the key sequence 2ABC 4GHI results in the letter h. Other variants can be 
easily derived. For example, the same row that is used in the specification step can be 
used in the disambiguation step, instead of the top row [Detweiler et al., 1990]. 
Another variation is to reverse the disambiguation and specification step. Yet another 
variation is to complement the island technique with visual preview [Ingmarsson, 
Dinka and Zhai, 2004]. 

In comparison to multi-tap where the number of required key presses for a letter 
varies between 1 and 4, the island technique has a uniform distribution of two key 
presses per letter. Therefore the delimitation of separate intended letters is 
unambiguous to the system. In comparison to multi-tap there is no need for a timeout 
or an explicit delimitation button. 

In a study examining novice users’ typing performance for text entry on a television 
set Marshall, Foster and Jack [2001] found that when users’ were asked to type a few 
short messages, multi-tap was on average faster than any island technique variation 
while maintaining the same error rate. Note that their study was very brief, 
encompassing only a few sentences. Butts and Cockburn [2002] found that when 
participants were asked to type 5 sentences from [James and Reischel, 2001] the 
island technique resulted in an average entry rate of 5.5 wpm. Errors were not 
reported in [Butts and Cockburn, 2002]. In a comprehensive study of the visual island 
technique [Ingmarsson, Dinka and Zhai, 2004] as a text entry method for television 
sets, novice users reached an average entry rate of 17 wpm after 10 45-minute 
sessions [Ingmarsson, Dinka and Zhai, 2004]. In Ingmarsson et al. [2004] participants 
were not allowed to correct their errors. Silfverberg et al. [2000] estimates that an 
expert user can expect an entry rate 22 wpm when using the island technique with a 
single thumb, and 25 wpm using both index fingers. 

Levy [2002] presents a technique called Fastap. With Fastap an extra layer of physical 
keys are superimposed onto the traditional keypad. The second keyboard consists of 
small raised keys along the corners of the regular keys. To input a letter the user 
presses the raised small keys next to the regular key. For example, to enter the letter d 
the user presses a small raised key next to the key 2ABC. Cockburn and Siresena 
[2003] shows that Fastap can be used without training, and is faster than T9 for novice 
users. For expert users the performance is about the same as T9, with an average entry 
rate of 10.8 for T9 in comparison to an average entry rate of 9.8 wpm for Fastap. As a 
reference point, multi-tap was found to be much slower with an average entry rate of 
5.6 wpm. The error rates were not reported. 

Wigdor and Balakrishnan [2004] presents a chording method for keypads. The device 
is equipped with three additional keys on the back. When the user enters a letter the 
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user simultaneously presses a key on the back of the device and a key on the keypad. 
E.g. to write the letter a on the 2ABC key the user simultaneously presses the topmost 
key on the back of device together with the 2ABC key. After 20 minutes of practice 
participants reached an average entry rate of 11.8 wpm with the chording method, in 
comparison to 9.2 wpm with multi-tap (these numbers are derived from Figure 3 in 
Wigdor and Balakrishnan [2004]; the multi-tap figure refers to the two-handed multi-
tap method). After 150 minutes of practice participants reached an average entry rate 
of 16.06 wpm with the chording method in comparison to 12.04 wpm with multi-tap. 
In the experiment participants were required to correct errors to proceed. 

Keypads with a limited amount of keys have also been investigated (e.g. [MacKenzie, 
2002]). Wobbrock, Myers and Rothrock [2006a] presents an input method where four 
keys are arranged in a square. To enter a letter the user presses a series of keys in 
sequence. An empirical experiment in Wobbrock et al. [2006a] shows that initial entry 
rate is on average 7 wpm. After 10 sessions the average entry rate was 15.5. These 
numbers are estimated from Figure 5 in Wobbrock et al. [2006a]). The grand mean 
error rate was 1.7%. In each session the participant typed ten phrases for each method 
investigated. However the two initial phrases were discounted as practice (20% of the 
session) and did not contribute to the reported entry or error rates. A visual chart 
showing the key combinations required for the letters was presented for the two initial 
practice phrases before the eight test phrases. 

In summary, keypad-based methods are relatively slow. Regardless of technique, 
novice users tend to reach an entry rate around 10 wpm. After many sessions of 
practice the average entry rate for the best keypad-techniques peaks at around 25 
wpm. Another downside with keypad-based methods is that they are primarily 
designed for a physical keypad. On the other hand, almost all mobile phones already 
have a keypad, and users have become familiar with the commercially successful 
keypad-based methods such as multi-tap and T9. 

6.2.2 Projection Keyboards 

A projection keyboard is a keyboard where the keyboard surface is projected on any 
solid surface. The user types text by moving the finger over the intended keys in the 
projection. The user’s intended key presses are detected using sensors. Here the term 
“projection keyboard” is broadened to also include keyboard mechanisms where users 
can type on any surface but do not necessarily utilize a keyboard projection, such as 
methods where the user wears special gloves or straps. 

Assuming perfect sensing technology what would be users’ entry rate performance? 
Goldstein, Book, Alsiö and Tessa [1999] found that participants equipped with gloves 
covered with electrodes that sensed the finger movements could keep up with a 
dictation rate at 45 wpm. The error rate was 12.3%. Participants wrote approximate 
1,000 words. Unfortunately the entry and error rates for novice users are not available. 
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It is also unclear how much the dictation task affected entry rates positively at the cost 
of increased error rates. 

One commercial implementation is Senseboard developed by Senseboard AB. To 
type text the user attaches electronic straps to the wrists. The straps contain sensors 
that detect finger and hand motion. Using the sensor data a software system infers the 
user’s intended key presses. Senseboard can according to Senseboard AB be used on 
any flat surface. There is no also need for a keyboard projection if the user can touch-
type. Senseboard is currently not for sale and there are no publicly available results 
from an empirical experiment. 

A competing technology is the Canesta Virtual Keyboard. It projects a laser keyboard 
surface and uses a 3D camera coupled with a motion-based pattern recognition system 
to detect the user’s intended key presses [Tomasi, Rafii and Torunoglu, 2003]. Roeber 
et al. [2003] shows that participants can reach an average entry rate of 46.6 wpm and 
an average error rate of 3.7% when repeatedly typing “The quick brown fox jumps 
over the lazy dog” for 2 minutes. It is unclear in Roeber et al. [2003] whether error 
rate refers to corrected errors, uncorrected errors, or both. 

Several other virtual laser keyboards exist commercially, for example I-Tech, VKB 
and VKey. Typically virtual laser keyboards project a visible keyboard area on a flat 
surface using a red laser diode. An infrared plane is projected parallel and slightly 
above the visible keyboard area. The user’s intended key presses are detected by an 
infrared light sensor when the user’s fingers intersects the infrared plane [Carau, 
2001]. 

In summary, conducted studies of fully-implemented projection keyboards are limited 
in scope. Assuming that high entry rates and low error rates are easily achievable, the 
downside with virtual keyboards is the preparation time required to setup the 
keyboard. Also, the user has to be sitting down and have a flat surface available for 
the technique to be practical. 

6.2.3 Tilt-Based Text Entry 

Sazawal, Want and Borriello [2002] describes an accelerometer-based text entry 
method where the user tilts the device in various directional sequences to produce 
letters. A preliminary user study indicates that users do manage to write simple 
phrases with the system. No further experimental results are reported [Sazawal et al., 
2002]. A further development of the system presented in Sazawal et al. [2002] is 
TiltType [Partridge, Chatterjee, Sazawal, Borriello and Want, 2002] where in addition 
to tilting the user presses special buttons to help the system to disambiguate the 
intended letter. No experimental results are presented [Partridge et al., 2002]. 

Wigdor and Balakrishnan [2003] uses tilt information to disambiguate keypad 
presses. The user disambiguates among the intended letters of a key by tilting the 
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device in one of four directions, e.g. tilt left for the first letter (for example a on the 
2ABC key), tilt forward for the second, and so on. After approximately 20 minutes 
participants reached an average entry rate of 7.42 wpm with the tilt method, in 
comparison to 7.53 wpm with multi-tap (the baseline). After approximately 250 
minutes of practice participants reached 13.57 wpm with the tilt method in 
comparison to 11.04 wpm with multi-tap. Errors were not allowed, i.e. users were 
required to correct their errors to proceed.  

6.2.4 Software Keyboards 

A software keyboard is here defined as a keyboard with two specific properties. First, 
the visual representation of the keyboard is presented on a touch-sensitive screen. 
Second, to press a key the user touches a graphical representation of the key on the 
screen. 

In the literature software keyboards are sometimes also known as graphical 
keyboards, virtual keyboards, or stylus/finger keyboards depending on context. 

Software keyboards are popular on devices that are operated primarily with a pen or 
finger. Because software keyboards are used on a flat touch-screen the user does not 
perceive the same rich tactical sensation when using them as when using a regular 
desktop keyboard. From users’ point-of-view primarily three use-quality properties 
are lost. 

First, the tactile sensation that confirms that the key is pushed down is lost. The keys 
of a regular desktop keyboard lower when pressed. In contrast, a software keyboard 
surface is static in the sense that it does not move when a key is “pushed down”. As a 
result the tactile feedback to the user when a key is hit is much lower, especially if the 
fingers are used as pointing devices. Styli are probably better in this regard since the 
user’s sensation of when the top of the stylus has reached the touch-screen is more 
abrupt and as a result most likely stronger than the user’s sensation of when the finger 
has come to contact with the touch-screen. 

Second, the certainty that the key press was registered is lost. This problem is more 
acute with finger-operated touch-screens. Touch-sensitive displays use sensors to 
detect when the user touches the surface. If the touch-detection system fails the key 
press is not registered by the software. Registration failure happens if the sensor data 
is of low quality or no sensor data is detected. Low quality sensor data can easily 
occur with pressure-sensitive touch-screens if the user applies too little pressure or 
moves the finger too quickly. With capacity-based sensors [Gungl, 1989] contact 
failure can be caused by insulation of the fingers. In contrast, the probability that a 
desktop keyboard fails to register a key press is miniscule. 
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Third, the sense of the boundaries of the keys is lost. With a standard desktop 
keyboard the user feels the boundaries of the nearby keys and the boundary of the 
intended key. 

The standard keyboard layout for software keyboards is QWERTY. This is also the only 
keyboard layout for software keyboards that has been widely accepted in the market. 
Zhai, Sue and Accot [2002] estimates the average expert text entry rate for a QWERTY 
software keyboard to be 34.2 wpm. 

MacKenzie and Zhang [1999] found that after a 20-minute transcription task on 
average participants typed 28 wpm and had an uncorrected error rate of 3.2% with 
QWERTY. After 20 20-minute sessions the average entry rate was 40 wpm and the 
uncorrected error rate 4.8%. Participant could not correct errors in the experiment. 

6.2.4.1 Optimized Software Keyboards 

It has since long been observed [Getschow, Rosen, Goodenough-Trepagnier, 1986] 
that the QWERTY keyboard layout is suboptimal when the contact point is single (e.g. a 
single finger or a single pen). Originally the QWERTY keyboard layout was designed to 
minimize mechanical jamming of the keys in typewriters [Yamada, 1980]. Since 
jamming is caused by two or more keys’ arms getting stuck together, the likelihood of 
jamming increases when two nearby keys are hit. As a result, frequent pairs of pressed 
keys were distributed on the opposite sides of the keyboard. When two or more 
contact points are used (e.g. all 10 fingers, or both thumbs) the QWERTY keyboard 
layout is not optimal but still good enough for practical use. 

Lewis, Kennedy and LaLomia [1992] and Lewis, Potosnak and Magyar [1997] use a 
model based on Fitts’ law [Fitts, 1954] and character-level bigram statistics to find 
more efficient keyboard layouts. MacKenzie and Zhang [1999] uses a similar model 
to find a key arrangement they call the OPTI keyboard layout (see Figure 6.3). 
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Figure 6.3. The OPTI keyboard layout [MacKenzie and Zhang, 1999]. 

In a study by MacKenzie and Zhang [1999] participants initially typed 17 wpm with 
OPTI and had an average uncorrected error rate of 2.1%. After 20 20-minute sessions 
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the average entry rate was 45 wpm with an uncorrected error rate of 4.2%. 
Participants could not correct errors. Zhai, Sue and Accot [2002] estimates the 
average expert entry rate performance of OPTI to be 42.8 wpm. 

Instead of relying on heuristics and trial-and-error when developing a new software 
keyboard layout, Zhai, Hunter and Smith [2000] uses a metropolis random walk 
algorithm to find the METROPOLIS keyboard layout (the layout is shown in Figure 6.4). 
The METROPOLIS layout is estimated to enable an average expert text entry rate of 46.6 
wpm [Zhai, Sue and Accot, 2002]. 
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Figure 6.4. The METROPOLIS keyboard layout [Zhai, Hunter and Smith, 
2000]. 

Another algorithmically derived keyboard layout is ATOMIK [Zhai, Smith and Hunter, 
2002], see Figure 6.5. Using a movement efficiency model with Fitts’ law, letter 
bigram frequency and alphabetical ordering tendency components they used 
simulated annealing to find a near-optimal software keyboard layout configuration 
within the model [Zhai, Smith and Hunter, 2002]. Its average expert entry rate is 
estimated to 45.3 wpm [Zhai, Sue and Accot, 2002]. The slight reduced average 
expert entry rate estimate is due to the alphabetic tendency of the letter key ordering. 
To introduce alphabetic tendency appears to be a reasonable tradeoff though given 
novice users find it easier to find the keys on a software keyboard with alphabetic 
order than without [Smith and Zhai, 2001]. 
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Figure 6.5. The ATOMIK keyboard layout [Zhai, Smith and Hunter, 
2002]. 

A problem with optimized software keyboards is that users have to learn a completely 
new layout. Specialized practice software using expanding rehearsal interval 
[Landauer and Bjork, 1978] has been shown to improve learning rate [Zhai, Sue and 
Accot, 2002]. Another alternative is proposed by Magnien, Bouraoui and Vigouroux 
[2004] where the most likely keys that follow the users’ previous text are pre-
highlighted by the software keyboard. The hypothesis is that users’ search time is 
reduced when practicing the new optimized layout. Magnien et al. [2004] show some 
evidence that input rates are higher for novice users when the most likely keys are 
highlighted. In their experimental design participants entered 50 words with or 
without prediction. To keep users in a novice state the keys were re-arranged before 
each word. Unfortunately details such as whether the conditions were balanced in the 
within-subject design and calculations of statistical significances are omitted in the 
paper. It is therefore hard to make any conclusive statements of the benefit of the 
technique. One interesting advantage with the proposed training technique is that the 
teaching aid can be enabled while simultaneously allowing the user to use the text 
entry method for daily work. 

6.2.4.2 Error-Correcting Software Keyboards 

A problem with software keyboards is the lack of tactile feedback from the keys. 
Using a pen or finger it is easy to slightly miss keys, increasing error rate. Another 
problem is that imperfect touch-sensors result in some contact points being lost 
altogether. 

Goodman, Venolia, Steury and Parker [2002] proposes a software keyboard that 
automatically corrects typing errors using a model that combines the probability of the 
pen’s hit point location with a character-level language model. Goodman et al. [2002] 
found that after typing 1000 characters users had the same entry with or without 
correction (19.8 wpm vs. 20). The uncorrected error rate was reduced by a factor 
between 1.67 and 1.87 in comparison to non-corrected standard typing on a QWERTY 
software keyboard. Participants were not allowed to correct errors. 
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An alternative word-level solution is the discrete continuous shape writing method. 
The reader is referred to Chapter 2 in this dissertation for in-depth information on this 
method. 

6.2.4.3 Double-Tapping Software Keyboards 

Nesbat [2003] presents a software keyboard based on the 12-key telephone keypad. 
Letters are assigned to keys based on their frequency distribution in the language. 
Frequent letters are accessed by double-tapping the pen while others are accessed by 
double-tapping two different keys. The assignment of letters to keys also depend on 
the probability that one key will be followed by another. This is to maximize 
movement efficiency in the spirit of Getschow, Rosen and Goodenough-Trepagnier 
[1986]. To my knowledge no formal evaluation of the text entry method has been 
conducted. Nesbat [2003] presents a theoretical model that predicts an average text 
entry rate of 50.1 wpm for expert users. As a reference the METROPOLIS software 
keyboard [Zhai, Hunter, Smith, 2000] layout has an estimated average text entry rate 
of 46.6 wpm, but using METROPOLIS keys are only tapped once. 

6.2.4.4 Menu-Augmented Software Keyboards 

Isokoski [2004b] presents a software keyboard that is augmented with a marking 
menu [Kurtenbach, Sellen and Buxton, 1993]. When the user presses the pen on a key 
the user can instead of simply lifting the pen, flick the pen in one of eight directions. 
Depending on the direction of the flick a second letter is emitted. To support novice 
users the system uses a marking menu with delayed pop-up. If the user lingers with 
the pen for a preset interval a pie menu pops up. Importantly, the letters for each flick 
direction are constant and do not change depending on which letter key on the 
software keyboard the user selected, which should enable faster learning. 

Isokoski [2004b] finds that after a 20 minute session users have an entry rate of 10 
wpm with menu, in comparison to 17 wpm without. After 20 20-minute sessions the 
performance of both methods are about the same, around 25 wpm. The grand mean 
error rate was 0.96% with menu and 0.59% without. Interestingly, entry rates reported 
in Isokoski [2004b] for regular QWERTY software keyboard typing (the baseline) is 
much lower than what is reported in MacKenzie and Zhang [1999], where users 
reached an entry rate of 40 wpm on a software keyboard after 20 20-minute sessions. 

6.2.4.5 Concluding Remarks 

In summary, software keyboards can reach competitive entry rates. An advantage 
with the software keyboard is that users immediately know what to do. There is a also 
a certain degree of skill transfer from using a desktop QWERTY keyboard to using a 
QWERY software keyboard even though from a motor control point-of-view the tasks 
are different. 

A downside with software keyboards is the need for the system to include a touch-
screen. If the software keyboard is driven by a pen, the pen needs to be picked up by 
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the user which therefore demands preparation time from the user. Another downside 
is that users tapping words repeatedly with a pen inflict forces concentrated to small 
areas of the touch-screen, which in the long run lead to screen damage and increased 
support cost for the manufacturer. In a study by Zhai, Sue and Accot [2002] it was 
also discovered that participants thought it was tedious and boring to type on a 
software keyboard. 

6.2.5 Handwriting Recognition 

Handwriting recognition has evolved considerably during the late 20th century 
[Tappert, Suen, Wakahara, 1990; Plamondon and Srihari, 2000]. Handwriting 
recognition can roughly be characterized into being either on-line [Tappert et al., 
1990; Plamondon and Srihari, 2000] or off-line [Nafiz and Yarman-Vural, 2001; 
Koerich, Sabourin and Suen, 2003]. The differentiating factor between the two is the 
information available to the recognizer. An on-line recognizer receives users’ 
handwriting as at least an ordered sequence of spatial sample points. An off-line 
recognizer receives users’ handwriting trace indirectly embedded in a bitmap image. 

Common approaches to on-line handwriting recognition are primarily data-driven 
statistical methods that rely on collecting and classifying vast amounts of users’ 
handwriting. Efficient features and classification methods are still subject to 
considerable research [Plamondon and Srihari, 2000]. Another, less popular approach, 
relies on template-matching, for instance energy-deformation or elastic matching 
methods [Tappert, Suen and Wakahara, 1990]. 

A problem with handwriting recognition is recognition errors. A wizard-of-oz study 
suggests that an error rate of 3% is acceptable to users in most cases [LaLomia, 1994]. 
However, when writing “business critical” information, users demand an error rate 
<1% [LaLomia, 1995]. Frankish, Hull and Morgan [1995] studied the effect of 
recognition errors on users’ perception of the text entry method. They found that in 
general handwriting recognition was not good enough for practical use. In addition, 
they found that users’ perception and acceptance of handwriting recognition depended 
on the task. When accurate input did matter, e.g. filling in the forms of a fax request, 
users were frustrated by recognition errors. In another task that involved free-text 
writing in a diary, users were not as critical to recognition errors [Frankish et al., 
1995]. Note that Frankish et al. [1995] tested isolated character recognition in 
commercially available handwriting recognizers at the time. Handwriting recognition 
methods have undergone tremendous development since the year 1995 (e.g. 
[Plamondon and Srihari, 2000]). 

As a mobile text entry method, handwriting recognition has the advantage that users 
already know how to write. The learning curve should be minimal. The disadvantage 
with handwriting recognition in comparison to handwriting on pen-and-paper is that it 
is recognition-based, which always implies several limitations: recognition errors and 
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a limited system vocabulary risk impeding users’ efficacy. Another disadvantage is 
the relative low speed that is achievable with natural handwriting. Hand printed 
character writing has an entry rate limited to around 15 wpm [Card, Moran and 
Newell, 1983]. Surprisingly, it appears that no comprehensive evaluation of cursive 
script handwriting recognition entry and error rate performance is available in the 
literature. 

6.2.5.1 Recognition of Pitman Script 

An alternative to handwriting recognition is automatic online transcription of 
stenography. After all, stenography systems were invented to overcome the 
limitations of long hand handwriting. Melin [1927; 1929] presents a comprehensive 
compilation of stenography systems in the Western world throughout history. The 
most common systems in the world were Pitman shorthand in United Kingdom and 
the colonies, and Gregg shorthand in the United States of America [Melin, 1927]. 
Overall, little research effort has been concentrated on automatically transcribing 
online stenography. The reason is probably because it is a very challenging task. 
Stenography is generally sloppy and incomplete, relying deeply on the writers’ 
knowledge of the text written to save writing time. In most instances, transcription of 
shorthand to longhand text had to be completed immediately because the writer 
tended to forget the context of the text, making later transcription hard, or even 
impossible [Melin 1927]. 

 

b t oa u
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Figure 6.6. Examples of Pitman shorthand script. The thick strokes are 
written with more intense pressure with a pen, or at a different angle 
with a quill. 

To my knowledge the first attempt to automatically recognizing shorthand is 
described in Brooks and Newell [1984]. At the time the hardware was insufficient. 
Hwte, Higgins, Leedham and Yang [2005] presents a recent attempt of a recognition 
architecture for recognizing online Pitman script (see Figure 6.6 for an example of 
Pitman script). No controlled text entry experiment is conducted. Hwte et al. [2005] 
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reports a recognition error rate of 7.14%. However, the circumstances around data 
collection are unclear. For example it is not mentioned how fast participants were 
writing Pitman script, and if the participants were experienced Pitman writers or not. 

Assuming low error rates online Pitman script has the capacity to perhaps enable 
entry rates as high as 100 wpm [Hwte et al., 2005]. The downside is that users need to 
learn highly specialized form of stenography, which may take weeks or months of 
dedicated training [Melin, 1927]. 

6.2.6 Speech Recognition 

A possible portable text entry solution could be speech recognition [Rabiner and 
Juang, 1993; Rudnicky, Hauptmann and Lee, 1994; Padmanabhan and Picheny, 
2004]. An unavoidable side-effect of speech recognition is the lack of privacy and 
interruption to others when used in a shared environment.  

Users can speak very fast, up to 200 wpm [Rosenbaum, 1991]. However just because 
a user can speak and be understood by other people, it does not necessary imply a 
computer system can accurately decode a user’s utterances into text [Moore, 2004]. 
Karat, Halverson, Horn and Karat [1999] found that participants could only 
effectively transcribe text at speed of 13.6 wpm. In Karat et al. [1999] participants 
were instructed to correct errors to make sure the final text was correct. 

In practice, the recognition process of converting the user’s acoustic signal to text has 
undergone much research (see [Rabiner and Juang, 1993; Padmanabhan and Picheny, 
2004] for overviews) but accuracy is still far from perfect [Karat et al., 1999]. Error 
correction in speech interfaces is also cumbersome and users tend to create cascading 
errors as a result of error correction difficulties [Karat et al., 1999]. For speech 
recognition on a mobile device, a multimodal correction interface via a software 
keyboard can to some extent alleviate this problem [Price and Sears, 2005]. 

When dictating it is hypothesized that speech drains cognitive resources and speech 
may be more suitable as a command input language than as a transcription interface 
[Shneiderman, 2000]. In contrast to writing, natural speech tends to be informal and 
conversational. As Shneiderman [2000] notes, an effective human-human interface 
does not necessarily imply an effective human-computer interface.   

6.2.7 Prediction 

To reduce keystrokes various forms of prediction can be used. For text writing in 
English, prediction-based methods are most commonly used for keypad-based 
methods, e.g. the dictionary-based methods and LetterWise that are discussed in the 
Physical Keyboards subsection. Several predictive models have also been proposed 
for use in text entry devices where the number of keys is significantly reduced to four 
keys or even less (e.g. [Tanaka-Ishii, Inutsuka and Takeichi, 2002]). Adaptive 
prediction models that attempts to continuously model the user’s text writing have 



 Design Dimensions of Mobile Text Entry 149 

also been investigated (see Tanaka-Ishii [2006] for a recent review). It is also 
important that the corpora used for language modeling accurately reflect users’ text 
and editing operations [Soukoreff and MacKenzie, 2003a]. 

6.2.7.1 Software Keyboard Prediction 

Masui [1998] presents a system that combines a software keyboard with a pop-up 
prediction list. As the user types on the software keyboard a pop-up list shows the 
most likely words that follow from the user’s input. A closely related system is the 
reactive keyboard [Darragh, Witten and James, 1990] that provides similar predictions 
for desktop keyboarding. Masui [1998] reports that a selected group of volunteers 
reached an average text entry rate of 8 wpm when writing a Japanese text consisting 
of 53 Kanji or Kana characters. No error rates are reported. A variant of menu-based 
prediction is commonly implemented in off-the-shelf handheld computers. 

6.2.7.2 Unistroke Prediction 

MacKenzie, Chen and Oniszczak [2006] presents a similar system to Masui [1998]. 
The difference is that the user inputs Unistroke [Goldberg and Richardson, 1993] pen-
gestures instead of typing on the software keyboard. Novices reached an average 
entry rate of 10 wpm and an error rate of 1.8% after an hour of practice of writing 
with regular Unistrokes (these numbers are estimated from Figure 6a and 6b in 
MacKenzie et al. [2006]). After 1 hour additional practice with the prediction system 
users reached an average entry rate of 12.8 wpm and average error rate of 1% 
[MacKenzie et al., 2006]. To simulate expert performance 3 of the original 10 
participants were selected to perform an additional session where only the pangram 
“The quick brown fox jumps over the lazy dog” was repeated throughout. This test is 
identical in execution and spirit to the expert speed estimate test introduced in 
Kristensson and Zhai [2004] and Kristensson and Zhai [2005]. MacKenzie et al. 
[2006] found that these expert estimates led to an average entry rate of 22.5 wpm. If 
one of the authors of the paper is included (i.e. n = 4) the average entry rate rises to 
25.6 wpm. 

6.2.7.3 Touch-Wheel Prediction 

Proschowsky, Schultz and Jacobsen [2006] presents a predictive text entry method for 
touch-wheels, such as the touch-wheel in the Apple iPod portable music player.  The 
letter keys are distributed in alphabetic order along a circle on the touch screen. To 
type a letter the user touches the touch-wheel in proximity of the intended letter. 
Because of the low accuracy of touch and the high-density of letters on the circle, the 
user’s intended letter is easily misinterpreted by the system. Proschowsky et al. [2006] 
proposes the use of a prediction system where the user’s intended letter key is inferred 
by a character-level language model. The language model’s influence is dynamically 
weighted depending on how fast the user re-positioned the finger. If the prediction 
outcome is wrong, the user needs to slide the finger clockwise or counter-clockwise to 
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scroll through the letters to eventually highlight the intended letter. When the finger 
tip is released from the touch-wheel surface a letter is emitted by the system. 

Proschowsky et al. [2006] evaluated the text entry method in relation to two other 
methods. The first was the same system as the one described above except prediction 
was turned off. The second was a baseline method where the user slides the finger 
clockwise or counter-clockwise to move a selection cursor among letters lined up in 
alphabetic order on graphical display. Proschowsky et al. [2006] evaluated the text 
entry methods in a study with three sessions. However because each session was 
relatively short and only involved typing five phrases, and sessions were only 
separated with 20 minutes breaks; I treat the three sessions as a single initial session. 
The prediction method was significantly faster with a grand average entry rate of 5.6 
wpm. In comparison, the grand average entry rate was 5 wpm when prediction was 
turned off and 4.5 wpm for the baseline (these numbers are calculated from Table 1 in 
Proschowsky et al. [2006]). The error rate was 1.7% with prediction, 2.4% without 
prediction, and 2.6% for the baseline. Proschowsky et al. [2006] reports that only the 
entry rate differences were significant. It is unclear in Proschowsky et al. [2006] 
whether error rate refers to corrected errors, uncorrected errors, or both. 

6.2.7.4 The Cost of Prediction 

There are reasons to believe word-prediction is rather slow. For prediction to work the 
user has to select the intended word from a graphical list. This action involves 
simultaneously visual, cognitive and motor components. If the user is experienced 
with the system and knows where to expect certain words to appear the user can use a 
fast linear strategy where the user starts looking at the top choice and moves linearly 
along the graphical menu. If the user is not experienced the user must first notice that 
a graphical menu with predictions pop-up. Then a search is initiated where the 
alternatives are examined by the user to determine if any alternative is the desired 
word. If the intended word is found, the user can then proceed to select it. 

6.2.8 Abbreviation 

Instead of predicting the users’ intention, the users themselves can minimize input 
redundancy by abbreviating or compressing their input according to predefined 
schemes. Abbreviation is an old idea. For example, in monasteries in medieval 
Europe it was common practice to abbreviate words to save page space when copying 
bibles. For example, the Latin word uerbum (“word”) was often compressed into ūbū 
[Jansson, 2004]. Vanderheiden and Kelso [1987] surveys many different abbreviation 
schemes for modern text writing on a computer. 

Shieber and Baker [2003] and Shieber and Nelken [2007] propose a specific 
abbreviation scheme for modern text writing on size-constrained devices. The idea is 
that the user writes compressed text that is automatically decompressed by the text 
entry system. Therefore less keystrokes are necessary to compose the same text mass. 
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In comparison to prediction abbreviation does not require cognitive visual attention 
from the user to process prediction [Shieber and Baker, 2003; Shieber and Nelken, 
2007]. 

The abbreviation model proposed by Shieber and Nelken [2007] is based on a 
compression scheme where all vowels (y is treated as a consonant) are dropped except 
when a vowel initiates a word. For example the word association is abbreviated as 
asctn [Shieber and Nelken, 2007]. A controlled experiment showed that participants 
reduced their input speed with 1% when abbreviating their input if the time to correct 
abbreviation mistakes is taken into account [Shieber and Nelken, 2007]. Therefore it 
appears the abbreviation is not very effective in practice. 

Abbreviation could be used in conjunction with character-level methods such as 
Unistrokes [Goldberg and Richardson, 1993], thumb keyboards, etc. A possible 
weakness to abbreviation is the difficulty in modeling typing mistakes. Because users’ 
typing is expanded, a single typing error may result in the entire word being wrong. 
Empirical investigations of thumb keyboard typing have revealed that participants 
tend to produce many typing errors [Clarkson et al., 2005]. In Experiment 3.2 in in 
this dissertation it was discovered that almost every 4th word had one typing mistake. 
On the other hand, abbreviation could be used to reduce typing stress, and increase the 
comfort in using a thumb keyboard by reducing the amount of necessary key presses. 

6.2.9 Artificial Alphabets 

Goldberg and Richardson [1993] proposes the influential text entry system called 
Unistroke. Unistrokes is designed for pen-based mobile devices and can be said to be 
motivated by three primary design goals: 1) efficiency, 2) accuracy and 3) minimize 
visual attention. 

To achieve efficiency the alphabet is designed with a minimal number of strokes to 
disambiguate the letters. Also, more common letters such as a or e have the shortest 
and most easily reproduced strokes, see Figure 6.7. Accuracy is attained by designing 
the alphabet so that individual pen-gestures are not easily confusable by the 
recognizer, even though Goldberg and Richardson [1993] notes that there were 
recognition accuracy problems with the letters m and n. Minimizing visual attention is 
possible because the pen-gestures are articulated in-place on top of each other and 
recognized invariant of small scale, translation and rotation perturbations. 
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N O P Q R S T U V X Y Z

 

Figure 6.7. The Unistroke alphabet [Goldberg and Richardson, 1993]. 

Graffiti is a unistroke variant that was developed and marketed by Palm Inc. Graffiti 
is heavily inspired by Unistrokes but has an alphabet where the individual strokes 
resemble the corresponding letters more. Around 40% of the lower and 70% of the 
upper Graffiti letters are identical to the Latin alphabet [MacKenzie and Zhang, 
1997]. MacKenzie and Zhang [1997] found that users can write Graffiti with an error 
rate around 3% after a few minutes of practice. 

Jot is variation of Graffiti that is so close to the idealized Latin alphabet that it can 
essentially be regarded as an isolated character-recognition based text entry method. 
Some characters are multi-stroke in Jot, for instance the capital T. Sears and Arora 
[2002] compared novice users performance of Jot and Graffiti. They divided the 
experiment into six different tasks. However, only one task (Task 6) can be regarded 
as a real text entry task where participants entered a series of phrases. The other tasks 
were concerned with writing addresses and other forms of auxiliary text. Therefore 
only results from Task 6 in [Sears and Arora, 2006] are reported here. Using Jot, 
participants reached an average entry rate of 7.74 wpm and an error rate of 15.4%. 
The error rate may be 0.154% because the unit is not noted in Table 5 in [Sears and 
Arora, 2006]. However judging from the discussion part in the paper it appears more 
likely that the error rate is 15.4%. It is important to note that participants were 
exposed to 10 minute of practice before the test. Results obtained during practice are 
not reported. Unfortunately there appears to be an error in Table 3 that makes it 
impossible to know what the average entry rate for Graffiti was in the text entry task 
(Task 6, Table 3 in [Sears in Arora, 2003]). However, the authors imply average entry 
rates were similar or lower with Graffiti than average entry obtained with Jot. In a 
controlled experiment Költringer and Grechenig [2004] found that when novice users 
were told to write three phrases Jot was significantly slower than the software 
keyboard. Jot resulted in an average entry rate of 9.24 wpm and the software keyboard 
resulted in an average entry rate of 13.64 wpm. The average error was 19.35% for Jot 
and 4.11% for the software keyboard. Költringer and Grechenig report error rate as 
“total error rate” [Soukoreff and MacKenzie, 2003b] that lumps together uncorrected 
and corrected error rate. 
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EdgeWrite [Wobbrock, Myers and Kembel, 2003] is another alphabet variation. The 
distinct feature of EdgeWrite is that the system is designed for robustness. The 
EdgeWrite alphabet is meant to be used within a square area surrounded by edges. 
The text entry method is intended to lead to stability and minimize error. To that 
effect the alphabet is designed so that all letters are written by sliding the stylus next 
to the edges. After typing 12 sentences novice users reached an average entry rate of 
6.6 wpm in comparison to Graffiti (the control condition) which reached 7.2 wpm. 
Error rates are not reported but are presumably low because the main motivation 
behind the paper is to introduce an alternative to Graffiti with lower error rates 
[Wobbrock, Myers and Kembel, 2003]. 

EdgeWrite can also be inputted with an isometric joystick in addition to a stylus 
[Wobbrock, Chau and Myers, 2007]. Wobbrock et al. [2007] shows that participants 
that used EdgeWrite via an isometric joystick reached 4.2 wpm after the first 20 
minute session (this number is deduced from Figure 6a in [Wobbrock et al., 2007]). 
The error rate for individual sessions is not reported.  Note that the procedure 
included a practice session before each testing session and the results from the 
practice sessions are not reported, which makes it impossible to understand the true 
initial effectiveness of the method. After 15 20-minute sessions the participants 
reached an average entry rate of around 10 wpm. The control condition was multi-tap 
which also reached around 10 wpm. EdgeWrite had a grand average error rate of 
1.34% in comparison to 0.52% for multi-tap. 

A further study of EdgeWrite involved combining EdgeWrite with completions. 
Essentially the alphabet is extended to include common words. For example the 
alphabetic notation for the word the is defined as a continuation of the EdgeWrite 
gesture for t [Wobbrock, Myers and Chau, 2006b]. Wobbrock et al. [2007] found that 
joystick-controlled EdgeWrite with completions reached 10 wpm after the first 20 
minute session (this number is derived from Figure 6b in [Wobbrock et al., 2007]). 
The error rate for individual sessions is not reported. After 15 20-minute sessions 
participants reached an average entry rate of 15.15 wpm for EdgeWrite completions 
in comparison to 15.75 wpm for T9 (the control condition). The grand average error 
rate was 0.18% for the EdgeWrite with completions, and 0.26% for T9. 

6.2.10 Word-Level Single-Stroke Encoding 

Perlin [1998] proposes a pen-based text entry technique called Quikwriting where the 
central idea is that the user should not be required to lift up the pen between inputted 
letters until a word is completed. In this sense it is a word level single stroke method, 
although each letter in a word still requires two to more individual (but connected) 
movements. With Quikwriting letters, numbers and auxiliary keys are distributed 
along the edges of a square (Figure 6.8). The square input area is divided into zones 
that group the letters. The center area is called the resting zone. The input process for 
a single letter is a three-step process. First, the user draws a pen stroke from the 
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resting area into the zone that contains the desired letter. Second, the user moves the 
pen stroke into the zone that topologically maps to the intended letter’s position in its 
zone. Third, the user moves the pen stroke back to the resting zone, from where the 
process can be repeated for the next letter. For an example, see Figure 6.8. Isokoski 
and Raisamo [2004] found that novice users reached an average entry rate of 5 wpm 
and an average error rate of 0.78% after entering text for 15 minutes (these numbers 
are derived from Figures 4 and 5 in Isokoski and Raisamo [2004]). After 20 15-
minute sessions participants had an average entry rate of 15 wpm [Isokoski and 
Raisamo, 2004] and an average error rate of 0.32% (this number is derived from 
Figure 5 in Isokoski and Raisamo [2004]). 
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Figure 6.8. Writing the character “f” with the Quikwriting method 
[Perlin, 1998]. The dot marks the beginning of the pen-gesture. 

Mankoff and Abowd [1998] proposes a pen-gesture text entry method called Cirrin 
(Circular input). To enter text with Cirrin the user moves the pen from key to key. The 
system simply records all keys that are visited and therefore the keys must be laid out 
in such a way that it is possible to reach the next key from a previous key without 
intersecting a third key.  A solution is to lay out the keys in a circle, but other closed 
shapes such as a hexagon or rectangle could possibly be used. To my knowledge, 
Cirrin has never been properly evaluated in a controlled study. Since the keys are 
distributed along a circle the pen-gestures tend to be long despite the attempt in 
Mankoff and Abowd [1998] to align frequent letter-pairs. As a result, fast text entry 
rate cannot be expected. 
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Figure 6.9. Writing the word “finished” with Cirrin [Mankoff and 
Abowd, 1998]. The dot marks the beginning of the pen-gesture. Not 
all keys in Cirrin are shown in the figure. 

Finally, another word-level single-stroke encoding is continuous shape writing. For a 
description of continuous shape writing the reader is referred to Chapter 3. 

6.2.11 Hierarchic Text Entry Methods 

Venolia and Neiberg [1994] presents T-Cube. It is inspired by the work of Goldberg 
and Richardson [1993] on Unistrokes and the work of Kurtenbach, Sellen and Buxton 
[1993] on marking menus. T-Cube consists of a two-layered pie menu. The second 
tier pie menus group letters, numbers, punctuation symbols, etc. The single first tier 
pie menu trigger individual second tier pie menus. The initial pie menu is always 
displayed to the user (see Figure 6.10, right). To enter a character the user presses the 
pen down on a slice in the initial pie menu. This action triggers a second pie menu to 
pop up with its geometric centroid at the user’s pen position (Figure 6.10, left). The 
user selects a character in the second pie menu by flicking the pen in the in the 
direction of the intended character. To help novice users T-Cube can be set to a 
training mode where the secondary pie menu is revealed whenever the pen is hovered 
over a slice. 

The display of the second pie menu is only a visual guide to the user and not 
necessary for the system to work. Similar to marking menus [Kurtenbach, Sellen and 
Buxton, 1993] the second pie menu is only displayed after an initial delay to 
encourage users to quickly flick in the direction of the intended letter without visual 
guidance. 

In a learning curve study with T-Cube novice users reached an average entry rate of 
3.2 wpm after 20-30 minutes (this number if calculated from Figure 7 in Venolia and 
Neiberg [1994]). After nine 20-30 minute long sessions the average entry rate was 
21.6 wpm (from Figure 7 in Venolia and Neiberg [1994]). The error rate is not 
reported. 
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Figure 6.10. Using the T-Cube to enter the character m.  First, the user 
selects a slice in the leftmost pie menu, thus triggering the popup of 
the rightmost pie menu. Second, the user flicks in the direction of the 
intended character. The dot marks the beginning of the pen-flick. 

Martin [2006] presents VirHKey (Virtual Hyperbolic Keyboard) which is a character-
level text entry method. The user specifies individual characters by navigating a 
hyperbolic projection. Similar to T-Cube the VirHKey alphabet is self-disclosing and 
the pen-gestures fixed. Therefore, after practice users learn the pen-gestures. After an 
initial 20-minute session average entry rate was 6 wpm (this number is estimated from 
Figure 15 in [Martin, 2006]). The error rate was 2.8% (participants were not allowed 
to correct errors). Average entry rate was 23 wpm after 20 20-minute sessions of 
practice and the error rate had increased to 5.9% [Martin, 2006]. 

Another hierarchic text entry system is Dasher [Ward, Blackwell and MacKay, 2002]. 
In Dasher the user navigates a cursor through hierarchical graphical boxes that 
contains the desired characters (Figure 6.11). The boxes’ sizes and hierarchic 
structures are dependent on a probabilistic language model [Ward et al., 2002]. In a 
sense, with Dasher the user “drives” the cursor to the intended destination – the 
desired sequence of words. For common words and sequences of words, the driving 
will be efficient because the probabilistic language model attempts to align the most 
likely character and word sequences along a straight path for the user. For less 
common words, the driving will be more involved and the user has to “turn” the 
cursor towards small areas. 
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Figure 6.11. Dasher [Ward et al., 2002]. 

Ward et al. [2002] performed an experiment investigating users’ performance in a 
dictation task. Note that the experiment was carried out on a regular, not a handheld, 
computer, but the results should apply for a handheld computer as well. Novice users 
reached a text entry rate ranging from 6 wpm to 14 wpm after five minutes of 
dictation. The word-level error rate ranged from 0.5% to 1.8%. After total one hour of 
dictation the text entry rate was 12-26 wpm. The word-level error rate ranged from 
1.6% to 3.8% (these numbers are estimated from Figures 14 and 15 in [Ward et al, 
2002]). Note that Ward et al. [2002] reports entry rate as actual words entered. 

In the experiment [Ward et al., 2002] Dasher used a language model trained on the 
novel Emma. Excerpts from the book not used when training the model were used as 
stimuli in the experiment (e.g. test data). It remains an open research question how 
well Dasher would perform on open text outside the language model’s training data 
domain. 

Ward et al. [2002] also investigated how screen size in pixels affected entry rate. A 
single experienced participant reached an average entry rate of around 30 wpm 
(Figure 19 in Ward et al. [2002]) when the screen size was set to 200 × 200 pixels (6.4 
× 6.4 cm on the device tested). A larger screen size did not improve performance. A 
lower screens size of 100 × 100 (3.2 × 3.2 cm of the device tested) pixels reduced 
performance (average entry rate around 17 wpm, Figure 19 in Ward et al. [2002]). It 
appears Dasher can be a competitive mobile text entry method for some users if the 
handheld device can dedicate more than 6.4 × 6.4 cm of the display area to the text 
entry method. 
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6.3 Design Dimensions 
This section identifies and analyzes the design dimensions of mobile text entry 
methods. Note that these design dimensions reflect different aspects of text entry 
methods from the text entry method designers’ point-of-view. The design dimensions 
are not meant to be directly comparable against each other. As such, some design 
dimensions are dependent variables, some independent variables, and other are 
neither. In fact, even ranking of these design dimensions is problematic since the 
relative importance of these dimensions is highly subjective and dependent on the 
ultimate goal a text entry method is trying to achieve. Again, the design dimensions 
are intended to visualize the design space in text entry and should not be interpreted 
as a conclusive systematic taxonomy or rulebook on how to design a new text entry 
method. 

6.3.1 Entry Rate 

Entry rate is one of the most important design dimensions of any text entry method. 
Clearly a text entry method must be effective enough to allow users to perform their 
tasks with minimal disruption. A too slow method frustrating to use and disrupts the 
work-process flow for the user writing text. The gold standard is the regular desktop 
keyboard which is generally regarded fast enough for all-purpose text writing. Ideally, 
average text entry rate performance is at the level of a regular desktop keyboard.  

Entry rate is often used as the most important, or sole, metric in text entry system 
design and research. This could be due to a lack of a more comprehensive 
understanding of the total design space. It could also be based on an implicit and 
hypothetical assumption that entry rate is an end result of most of the other 
dimensions to be discussed later.  

However there are many aspects to entry rate. For most methods, users tend to 
become increasingly proficient with the text entry method they use. Thus the average 
entry rate is not meaningful when taken as the average of a large time span. In the 
literature researchers frequently recruit a sample subset from the population and 
conduct controlled experiments with a set of participants. In this situation average 
entry rate tends to refer to the average of the entire sample for a session (typically the 
last). This is usually the number cited by other researchers when comparing text entry 
methods. 

A problem with this habitual comparison of average entry rate is that the average 
entry rate is not comparable between methods outside the controlled experiment 
where the original numbers were derived. First, different experiments have different 
sets of participants, and text entry is shown in several experiments to be highly 
dependent on individual skill (e.g. [Matias, E. and Buxton, W, 1996; Lyons, K, 
Starner, T. and Gane, B., 2006]). There also exist factors such as participants’ age that 
are known to affect typing entry rate [Rosenbaum, 1991] and whether or not 
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participants are inputting text in their native language [Isokoski and Linden, 2004]. 
Second, there is no standard on how experimental procedures for evaluating text entry 
methods should be designed. 

The term “average entry rate” washes out the fact there exists both a minimal and 
maximal entry rate for every technique. Here two complementing terms are 
introduced: the floor entry rate and the ceiling entry rate.  

6.3.1.1 Floor Entry Rate 

The floor entry rate is defined as the lowest entry rate anticipated for a method. It is 
the initial performance expected from participants writing open text for some period 
of time, e.g. 10-60 minutes. Often the floor entry rate can be measured immediately 
and trivially by letting a complete novice user type a few test sentences with the text 
entry method under investigation. In fact, many text entry researchers report results 
where only a few sentences are written by participants. Such entry rates are 
considered floor entry rates. The measured average floor entry rate is important since 
it is a component of immediate efficacy (to be discussed later) of the text entry 
method. A high floor entry rate means users can benefit from the text entry method 
from the start. 

6.3.1.2 Ceiling Entry Rate 

The ceiling entry rate is defined as the highest entry rate physically achievable by 
users writing a portion of realistic text with a text entry method. Unlike expert entry 
rate, ceiling entry rate is the rate where it is physically almost impossible to surpass. 

For ceiling entry rate to be meaningful it needs to be empirically validated through an 
experiment with a random sample from the user population. How to define a standard 
experimental procedure to derive ceiling entry rate is an interesting methodological 
question concerning a number of components that must be isolated and controlled. 

First, skill transfer varies between text entry methods. For example a thumb keyboard 
benefits from skill transfer from desktop keyboard skills, keypad-based methods 
benefit from skill transfer from multi-tap / T9 keypad skills. Other methods do not 
benefit from skill transfer, such as Unistrokes [Goldberg and Richardson, 1993], 
where the user needs to learn a new alphabet.  

Second, character-level methods can be faster for participants to completely 
memorize in muscle memory than word-level methods. This is because character-
level methods involves only 26 or so unique input patterns and therefore require less 
learning effort. Therefore, to measure the ceiling entry rate of word-level methods 
users may require more training. It may also be necessary to create a specialized 
experimental setup, such as letting users repeatedly write a single phrase over and 
over to saturate learning (e.g. Experiment 3.3). 
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Third, participants may need explicit direction to realize how to excel in entry rate 
with a text entry method. It may be that it does not suffice to use the phrase “proceed 
quickly and accurately” when measuring ceiling entry rate. For novel text entry 
methods, participants may never realize how quickly they can write unless one 
explicitly shows them. As an example, with continuous shape writing it is possible to 
become extremely fast when writing phrases whose motor patterns are completely 
memorized in muscle memory (over 98 wpm, see Experiment 3.3 for details). 
However, to achieve these entry rates the participant needs to realize that it is not 
necessary to look at all at the keyboard and rather merely move the hand from 
memory. A hypothesis is that for innovative text entry methods some participants 
require explicit demonstration to reach expert performance. This is not surprising if 
one consider the history of typewriting. Experts in typewriting touch type text without 
looking at the keyboard. However, touch typing was not discovered until decades 
after the typewriter was invented [Yamada, 1980]. Apparently prolonged usage is not 
always enough for users to self-discover the most effective way to use a text entry 
method. In continuous shape writing, when a user truly “shape writes” text the user 
articulates pen-gestures from muscle memory rather than attends visual-guided 
tracing of the letter keys. Future research is required to properly define an 
experimental procedure for finding ceiling entry rates for text entry methods. 

Finally, ceiling entry rate should not be confused with expert entry rate and average 
expert entry rate. Ceiling entry rate is maximum performance measured as an average 
within a sample of participants. In the process of finding the ceiling entry rate 
participants will make many mistakes where the input has to be discarded. In 
comparison, expert entry rate is the entry rate obtained when participants highly 
skilled and proficient with the text entry method are writing real text. Expert entry 
rate is only meaningful together with an error rate measure since there is a speed-
accuracy tradeoff in text entry tasks in general. Average expert entry rate is the 
average of several participants’ entry rates. Typically expert entry rates are obtained 
through a longitudinal learning curve experiment, or by measuring text entry rates of 
highly proficient users of the method (e.g. the researchers who has worked with the 
text entry method for a long time). 

6.3.2 Error 

Entry rates are meaningless when not accompanied with some measurement, control 
and reporting of error rates. Human performance inherently involves speed-accuracy 
tradeoffs. For the same task, a sloppy and erroneous performance tends to be faster 
than a careful and precise performance. 

It is important for a text entry method to attempt to restrict errors. A method that 
results in too many errors can be perceived as tedious and untrustworthy by users. On 
the other hand text entry is a skill-based activity where errors will inevitably occur. 
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Handling these errors is an integral and inseparable part of text composition in 
practice. 

The literature is sparse on studies of users’ acceptance of errors. LaLomia [1994] 
found that in the context of handwriting recognition writers generally only accept a 
1% error rate on the word-level in business communication. For more general text an 
error rate of 3% was acceptable. However it is unclear in that study whether the errors 
were errors that writers discovered and corrected, or undiscovered errors in the 
composed text. It is plausible that typing errors are generally more accepted in 
informal email and instant messaging conversations. 

Errors can be counted on both the character and the word level. Thumb keyboards, for 
example, causes errors on the character-level. Cursive handwriting and continuous 
shape writing causes errors on the word-level. An advantage of character-level errors 
is that they most likely do not form valid words. Therefore, they can be captured by 
spell checking algorithms in the text composition software. Word-level errors cause 
an entire unintended word to be wrong, which may be harder for spell checking 
software to detect (unless new spell checking software is developed at a sentence or 
phrase level). On the other hand, word-level errors are more easily detectable for the 
user because they break the logical flow in the text. 

6.3.3 Learning Curve 

Mobile text entry methods are skill-based. Generally text entry skill is a function of 
practice and as a central tendency text entry skill learning tends to follow a power-law 
curve [Crossman, 1959]. This tendency has also been observed in many of the studies 
that have been discussed earlier. 

The learning curve of a mobile text entry method can be an important dimension to 
consider if high text entry rates require extended amounts of practice to be reachable. 
If a text entry method is fast from the beginning, e.g. 20-25 wpm, the rate of increase 
in learning is less critical. Frequently, text entry methods are rather slow in the 
beginning with average entry rates < 10 wpm (e.g. the twiddler that has an average 
entry rate of around 6 wpm and increases over time to over 30 wpm [Lyons et al., 
2006]). In such case the rate of increase along the initial stage in the learning curve is 
more important because the text entry method must enable users to quickly reach an 
acceptable text entry rate.  

6.3.4 Immediate Efficacy 

Ideally a novice user is able to be use a mobile text entry method effectively 
immediately without any training. Effective use involves a high enough text entry rate 
and low enough error rate that the method is not perceived as too tedious, frustrating, 
or cumbersome by users. 
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To my knowledge there are no studies on immediate efficacy and what entry and error 
rate levels users accept. There may not be a simple standard either since rationally the 
amount initial learning effort justified depends on the eventual payoff.  A common 
example is the comparison between tricycles and bicycles. While the latter does take 
serious learning to get started, its eventual performance payoff attracts most people to 
learn it.  In the context of mobile text entry, most likely users understand the fact that 
mobile devices are limited in form factor and cannot provide a satisfactory desktop-
level experience. The Graffiti text entry method is an example of the immediate 
efficacy effect. Prior to Palm Computing’s Graffiti text entry method traditional hand 
printed character recognition was often used. The Apple Newton provided both hand 
printed and cursive handwriting recognition. However, the accuracy of handwriting 
recognition was too low in the early days, which is believed to have contributed to the 
Newton’s failure [MacNeill, 1998]. Palm Computing’s handheld computers were on 
the other hand a tremendous success. One reason that was often referred to by trade 
press journalists and analysts was the low-error rate Graffiti text entry method [Butter 
and Pogue, 2002]. An empirical investigation by MacKenzie and Zhang [1997] 
revealed that users could learn the Graffiti alphabet very quickly – within five minutes 
of use. Therefore, while not having stunning entry rates, Graffiti due to its low error 
rate proved to be a practical method with high immediate efficacy. 

An easy method to judge immediate efficacy is to examine entry and error rates that 
users obtain when typing open text within the first ten minutes of use. If either entry 
or error rates are unacceptable, the method lacks immediate efficacy.  

6.3.5 Form Factor 

For almost all text entry methods the form factor of the mobile device plays an 
important role. The limited physical size of a device may prohibit a thumb keyboard 
that requires more space than the standard telephone keypad. If the device consists of 
only a large touch-screen the text entry method must rely on finger, pen or speech 
input – ruling out many physical key-based methods. 

Some mobile text entry methods are more adaptive than others. For instance 
EdgeWrite [Wobbrock et al. 2003] has been adapted to both pen and joystick 
[Wobbrock et al., 2007]. The joystick version can theoretically be used on a mobile 
device with a very small size [Wobbrock et al., 2007]. 

6.3.6 Preparation Time 

Preparation time is here defined as the time interval from the user’s intention to start 
writing text when the text entry method is not set up, to the point in time when the 
user is able to start writing. Methods that are integrated into the system such as 
permanently attached thumb keyboards and keypads have a startup cost of zero. 
Systems such as projection and fold-up keyboards have in comparison a high long 
startup cost because the user is required to put down the primary device (for example 
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a smart phone or handheld computer) and pick up and install the text entry system. 
Pen-based systems have a much lower preparation time but may still require the user 
to fetch the pen for the device. In that sense, the preparation time is not zero for pen-
based devices unless the user is already actively using the pen with the system. 

Since mobile text entry is supposed to be always available the impact of a high 
preparation time should not be neglected. Such methods need to be complemented 
with a secondary mode of input. If users do not appreciate the preparation time there 
is a risk that the secondary text entry mode becomes the user’s primary method in the 
end. At worst, a mobile text entry method with high preparation time may result in the 
user not bothering writing text on the device. 

6.3.7 Localization 

Not all methods are equally suitable to the vast amount of languages in the world. 
Almost all text entry methods in the literature have focused on (U.S.) English. Some 
methods, such as the keyboard, can easily be extended to other Western languages 
such as German and French by introducing the additional accented letters as 
additional keys. In Chinese, the keyboard is not enough in itself and complemented 
with menu-based systems where the Latin characters entered via the keyboard 
(pinyin) are disambiguated into Chinese characters via a graphical menu system 
[Wang, Zhai and Su, 2001]. 

Systems that depend on language modeling need to adapt language resources such as 
corpora and dictionaries. In some systems, such as Dasher [Ward et al., 2002] and 
continuous shape writing additional inventive changes are needed for the system to 
support languages with dramatically different structure. The reader is referred to the 
Localization section in Chapter 3 for additional information on how continuous shape 
writing was adapted to support German and Korean. 

6.3.8 Comfort 

The comfort of a device is also important. There is distinction between mental and 
physical comfort. For example, physically typing on a thumb keyboard and keypads 
can become uncomfortable after prolonged usage because the thumbs become numb. 
Typing on software keyboards is not as physically demanding as typing on thumb 
keyboards. On the other hand users perceive typing on software keyboards as 
“boring” [Zhai, Sue and Accot, 2002]. 

The general standard design of the mobile phone has also been reconsidered in light 
of the recent increase in text entry on these devices [Hirotaka, 2003]. 

It appears from a literate review that few text entry researchers considered comfort. 
The focus is generally on entry rate exclusively. This is also probably because 
comfort is highly individual and hard to measure. For example, it is plausible thumb 
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and nail sizes affect thumb keyboard comfort, especially for particularly small thumb 
keyboards. 

Another aspect of comfort is the loose term “fluidity”. Fluidity is generally used as a 
term in sketching interfaces to describe user interface actions that are perceived by 
users as easy, straight-forward and quick, yet with enough expressiveness for the 
actions to perform something useful. For example, with marking menus [Kurtenbach 
et al., 1993] users can select deeply-nested menu choices with single fluid pen-
gestures. Another example is continuous shape writing where users write entire words 
by single fluid pen-gestures. 

6.3.9 User Engagement 

A problem with mobile text entry methods is the novelty of the methods for users. 
Text entry is a highly skill-based task that demands users’ active participation. This is 
problematic since users want to write text, not learn a new text entry method. A text 
entry method that is perceived as plain, tedious or simply “boring” is not likely to be 
actively used by users unless it is forced upon the users as the only text entry method 
on the device. 

A related task is the challenge in creating an instructive tutorial or training application 
that is engaging enough to keep users interested long enough to reach efficacy with 
the text entry method. There is a risk that users who have the least time and just want 
to get work done are the ones that simultaneously need training to be effective and do 
not have time or patience to start engaging in a training program. Ideally the training 
part is integrated with the general text entry method and lets users be both productive 
and able to go through the training. For example, a training program that can teach 
users the text entry method and let them work on open text the users intend to write 
(e.g. email) is more valuable. An example of such a system is the software keyboard 
highlighting method presented by Magnien et al. [2004], discussed in the Software 
Keyboards subsection above. 

6.3.10 Visual Attention 

A good text entry method should minimize visual attention required. Minimizing 
visual attention allow users to focus on the text composition task, for instance 
formulating an email to a colleague. Many researchers have previously emphasized 
the importance of “eyes-free” text entry (e.g. [Goldberg and Richardson, 1993]). 
Pavlovych and Stuerzlinger [2003] explicitly investigated how fast users could type 
with and without visual reference to the device. They compared two methods of 
multi-tap, where one variant used the traditional letter assignments of the keys, and 
the other had letters on each key re-arranged if it reduced average number of required 
key presses for words [Pavlovych and Stuerzlinger, 2003]. In the final session 
participants were asked not to look at the device or the button assignment cheat sheet. 
Overall average entry rate dropped slightly but error rates increased dramatically (see 
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Figures 6 and 7 in Pavlovych and Stuerzlinger [2003] for details). With visual 
reference error rates were less than 1%. Without visual reference, error rates increased 
to over 6% for multi-tap with standard letter arrangement, and 4% when the letters on 
each key were arranged. 

Wobbrock et al. [2007] investigated how fast participants could write text using 
joystick-EdgeWrite while holding the input device occluded under table. Wobbrock et 
al. [2007] found that users had an average text entry rate of 3.09 wpm for multi-tap 
and 8.09 wpm with isometric joystick-EdgeWrite. The average error rates were 1.58% 
for multi-tap and 2.96% for joystick-EdgeWrite. As a reference point, with visual 
reference users reached around 10 wpm for either condition. With visual reference the 
grand average error rate for EdgeWrite was 1.34% and 0.52% for multi-tap. 

In summary, experimental results reveal that even methods that are a highly plausible 
to be used eyes-free suffer decreased entry and error rate performance when 
participants are explicitly denied visual reference. It appears users prefer looking at 
least partially at the input device when entering text, even when using so-called eyes-
free text input methods. 

It is important to note that an eyes-free method does not necessarily translate into a 
fast text entry method and vice versa. For example Unistrokes [Goldberg and 
Richardson, 1993] are eyes-free but rather slow. In comparison, traditional software 
keyboards and Dasher [Ward, Blackwell and MacKay, 2002] are relative fast even 
though the visual attention demand is essentially maximized. 

6.3.11 Cognitive Resources 

Another cost almost any text method uses significant cognitive resources. 
Shneiderman [2000] writes in an influence article about how increased cognitive 
demands confound the text writing process for speech recognition interfaces. A 
method such as Dasher [Ward et al. 2000] most likely require intense cognitive 
processing because the user must scan a dynamically changing scene and plan ahead 
where to steer the cursor to enter the desired text. Most text entry methods are in a 
continuum ranging from little to massive cognitive overhead depending on the skill of 
the user and the current word inputted. For example continuous shape writing 
demands plenty of cognitive resources from users writing unfamiliar words: the user 
must plan ahead at least part of the trajectory, internalize how to spell the word, etc. 
On the other hand, if the user completely learns the shape writing gesture for the 
word, articulation can be executed directly from muscle memory which has a low 
cognitive overhead. The same argument follows for artificial alphabets that require a 
conscious initial learning effort from users. 
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6.3.12 Privacy 

Some situations, such as public transit or conference meetings require the ability to 
enter text privately. Speech recognition does not fulfill this criterion. Keyboard-based 
methods can also be disturbing, for instance if used by the audience at presentations. 

Most text entry methods have a reasonable level of privacy in this regard. The notable 
exception is again speech recognition. 

6.3.13 Single vs. Multi-Character Entry 

Some text entry methods work on a character-by-character level. In contrast, other 
text entry methods operate on the word level, for example handwriting recognition, 
speech recognition and continuous shape writing. A method such as Dasher [Ward et 
al., 2000] where the user navigates through a structure to enter words is in this regard 
operating on the single-character level because each character in the process can be 
outputted as soon as it is specified. 

There are reasons to believe single-character entry is better. One reason is easier 
integration with operating systems and applications that almost all are built to accept 
single-character input from a keyboard. Further, the results from single-character 
input can be corrected immediately by the user. With a single-character input method 
an error results in a single character that is wrong. Many such errors can be trapped 
with a spell checker. With a word-level entry method an error results in another 
legible word that might be harder to spot. The risk for misconceptions by a reader 
when reading entire words that are wrong is also greater. 

On the other hand, word-level entry methods can result in fewer errors because 
information about an entire word is taken into account by the text entry method. For 
example, continuous shape writing uses information about the entire geometrical trace 
to match a likely word. This allows a certain degree of tolerance even if the user’s 
input is severely deformed. A similar case is the discrete shape writing method which 
can correctly recognize the intended word even when all keys are missed in the most 
extreme case, provided no other candidate words are closer to input pattern  (see 
Chapter 2 and Chapter 3 for in-depth information on discrete and continuous shape 
writing). A further hypothetical advantage of word-level text entry methods is that the 
input process is chunked into larger semantic entities (cf. chunking in gestural 
interfaces in [Buxton, 1986]). It is plausible that users think of words rather than 
characters when writing. In fact even with character level input methods such as type 
writing, skilled typists tend to memorize larger chunks of key sequences that are 
frequently used [Yamada, 1980]. People’s typing performance tends to be much lower 
when typing a random sequence of letters [Fendrick, 1937]. Therefore it may be more 
effective or intuitive for users to write with an interface that operates on words 
directly. 
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6.3.14 Specification vs. Navigation 

Specification vs. navigation concerns users’ mental model of the text entry method. A 
specification-based method strives to internalize in muscle memory the patterns 
involved in articulating a character or word. Almost all text entry methods fall into 
this category, e.g. traditional software keyboards, thumb keyboards, Unistrokes, 
EdgeWrite and continuous shape writing. However, some text entry methods are 
inherently dynamic. Examples are Dasher and adaptive prediction. These text entry 
methods rely on a visual-feedback loop between the system and the user. The most 
extreme example is probably Dasher that provides an explicit “driving” model where 
the user drives the cursor to the desired destination. Because the driving path is 
always different, Dasher cannot rely on users internalizing articulations for specific 
characters or words in their muscle memory. Rather, Dasher must rely on expert users 
gaining increased hand-eye coordination and reading ability skills. 

Interestingly, this analysis suggests that this design dimension splits text entry 
methods into two orthogonal categories. 

The first category attempts to minimize information transfer from the human motor 
control system to the computer at any given point time. Methods such as Dasher and 
adaptive language modeling achieves this by recognizing that most motor actions 
achievable by users are in fact redundant and should be minimized. For example, in 
Dasher the cursor is merely steered toward a target, and depending on the target’s 
likelihood the target’s area is greater and can be reached faster with the cursor. 

In contrast, the second category does not attempt to minimize information transfer 
from the human motor control system to the computer in a context dependent manner. 
Rather, the information transfer is minimized by the designers of the text entry system 
in the design stage. A straight-forward example is Unistrokes [Goldberg and 
Richardson, 1993] whose alphabet is designed with minimal redundancy to reduce 
users’ required articulation times for single letters. This basic idea is implicitly or 
explicitly present in almost any text entry invention. As a result of only relying on this 
initial optimization, at any point in time the information transfer from the user to the 
system cannot be optimal because the user’s text input signal is fixed and context-
independent. In return, the user can during usage gradually and partially internalize 
the articulation for a characters or word into muscle memory and enable text entry 
that is primarily based on open-loop recall from memory. 

The suitability of either approach depends on the user’s and the device’s abilities. For 
example, a motor-impaired user is more likely to benefit from a navigation-based text 
entry method. A healthy individual may also benefit more from a navigation-based 
method if the input mechanisms on the device are limited, for example if the input 
mechanism is a joystick. Outside these hypothetical situations a specification-based 
method is more likely to be faster because of eventual fast open-loop articulation.  
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6.3.15 One-Handed vs. Two-Handed 

A mobile text entry method should be versatile. A text entry method that can be 
manipulated with one handed instead of two is more flexible to a user on the move. 
Therefore, ceteris paribus a one-handed text entry method is preferred. 

6.3.16 Task Integration 

The efficacy of a mobile text entry method is not only restricted to the method itself. 
To be practical the method needs to be tightly integrated with the operating system 
and device it is used on. For character-level text entry methods this poses less of a 
problem since almost all operating systems and devices that need text entry readily 
supports the concept of single-character input (e.g. a series of keyboard scan codes). 
More advanced text entry methods that rely on lexicons or language models may have 
more difficult issues with integration.  For instance, if the text entry method relies on 
some form of pattern recognition, it is beneficial to let users choose from the next best 
candidates in case the user’s intended word did not get properly recognized. However, 
most operating systems and devices do not have built-in facilities to directly support 
this behavior, and it can be difficult or even impossible to implement it without 
consulting the operating system or hardware vendor directly. 

6.3.17 Robustness 

Robustness is a measure of how much external noise the text entry method can handle 
while maintaining acceptable entry and error rates. Since mobile text entry methods 
are intended to be used on the go, it is desirable they withstand some external noise 
such as the user walking along a corridor while writing, or writing an email while 
using public transportation. To my knowledge little studies have been conducted 
where participants were in a truly mobile setting. One of the closest studies I am able 
to find is Crossan, Murray-Smith, Brewster, Kelly and Musizza [2005] who 
investigated how stylus pointing performance on a handheld computer was impacted 
when participants were walking. As expected Crossan et al. [2005] observed lower 
response times and higher error rates when participants were walking in comparison 
to when they were sitting down. For the smallest targets that had a diameter of 5 
pixels Crossan et al. [2005] observed 43.5% error rate when participants were walking 
in comparison to 22% when they were sitting down. Not until targets’ diameters were 
expanded to 25 pixels did the error rate converge between the two conditions. As a 
reference point the 3.8" touch-screen used in the experiment had a screen resolution of 
240 x 320 pixels (these specifications are derived from Hewlett-Packard product 
information booklet about the test device used in Crossan et al. [2005]). No statistical 
significances were calculated from the collected data material. Never the less, their 
results appear to suggest that pointing tasks suffer a considerably increased error rate 
when participants are walking. The reported data suggests that software keyboards 
without correction algorithms, such as for example discrete shape writing, are not 
going to be robust to users typing text on the move. 
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Another study by Price, Lin, Feng, Goldman, Sears and Jacko [2006] examined how 
speech recognition performance is affected when users are on the move. They found a 
significant increase in error rates when participants were walking. 

Empirical evidence of the effect of robustness on text entry performance suggests that 
as soon as the user starts moving, performance decreases. It is interesting that an 
interface such as speech recognition that should be relatively insulated from motor 
control interference in comparison to systems that require hand-eye or hand 
coordination, still suffers significantly in error rate when users are on the move [Price 
et al., 2006]. 

6.3.18 Device Independence 

In general, a text entry method is more useful if it can be used on many varying 
mobile devices: from joysticks, small mobile phones with the size of a match box, to 
larger portable multimedia devices. Isokoski [2004a] advocates the usefulness of 
device independent text entry systems. Unfortunately, device independent text entry 
methods proposed in Isokoski [2004a] are too slow to be practical. Therefore, tasks 
that demand a significant amount of text writing, such as writing emails, are likely to 
force users to use non-device independent text entry methods. 

6.3.19 Computational Demands 

Mobile text entry methods are almost always targeted towards small handheld 
devices. These small computers have typically simultaneously less processing power 
and less memory than their desktop counterparts. They also often lack a floating-point 
unit (FPU), which causes problems when implementing text entry methods that 
involve many floating-point calculations. As a result, pattern-recognition based text 
entry methods like handwriting and speech recognition can be difficult to implement 
without impeding performance and user experience. A real-world example is the 
study by Price and Sears [2005] on speech recognition for mobile devices. Because of 
limited computational power speech recognition must be off-loaded to a server. Price 
and Sears [2005] therefore introduced network latency as a factor affecting entry rate. 

6.3.20 Manufacturing Cost 

Some mobile text entry methods require significant manufacturing costs. For instance, 
physical key-based solutions require factory assembly. Touch-screen methods 
obviously require a touch-screen. Since mobile phones and other mobile devices 
usually already have a screen and physical buttons, text entry methods founded on 
those assumptions may incur little or no extra manufacturing cost, except possibly 
licensing. A method based on the assumption that a touch-screen is present, does not 
incur extra manufacturing cost if the device is multimedia device, such as a video 
phone or mobile movie player. 
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6.3.21 Support Cost 

Support costs should not be neglected. Text entry methods that are not intuitive to 
new users do most likely increase support costs for the producer. Some methods can 
result in a useless device for the user if no appropriate fall-back text entry method is 
implemented. For example, a too small thumb keyboard may be unusable for a person 
with large thumbs. Other methods may increase the risk of damaged hardware. For 
example, as discussed when presenting software keyboards, repeated tapping on the 
screen with a pen can cause damage the touch-screen. 

6.3.22 Market Acceptance 

Belonging to an engineering science discipline, text entry method inventors should 
focus on real world impact. Is the proposed text entry method practical? Or in other 
words: does the proposed text entry method satisfy or tradeoff the above given design 
dimensions in such a way that it is believable users would want to use the method? As 
an example, a text entry method that offers users four wpm average entry rate is not 
practical, unless the device is severely limited in functionality. A new text entry 
method should significantly exceed the capabilities of an existing method in at least 
some design dimension, preferably many. 

In a sense text entry research is an engineering science and driven by incremental 
improvements to existing techniques. Are incremental improvements to text entry 
enough of an incentive for users to switch? 

David [1985] argue that path dependency and “one damn thing follows another” 
resulted in QWERTY not being adopted in favor of the Dvorak Simplified Keyboard. 
Essentially, the argument goes that because of the QWERTY’s strong market presence 
the cost of switching layout and re-training staff was too high, even though the 
Dvorak Simplified Keyboard in the long run might be more efficient. Liebowitz and 
Margolis [1990] questions this view because the scientific evidence that Dvorak 
provided when arguing that the Dvorak Simplified Keyboard offered a substantial 
improvement over QWERTY typing is unconvincing. Therefore Liebowitz and 
Margolis [1990] argues that the QWERTY layout has prevailed because it is good 
enough for most users and the enormous re-training cost is not worth it. 

In the end, the only way to find out if a text entry method will succeed in the market is 
to put it out there. Obviously business skills, marketing, popular press coverage, 
timing and luck are significant factors. 

6.4 Text Entry Methods in Design Space 
The above mentioned design dimensions serve to give a wider perspective on the 
many and often conflicting dimensions a novel text entry method must endure. Some 
dimensions are inherently related, most notably entry rate and error rate. Other 
dimensions, such as localization and device independence are less critical since they 
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only affect how general the text entry method can be applied in other contexts. There 
is no reason to demand that a text entry method suitable for a particular language and 
device should be effective for all purposes and all languages. 

6.4.1 What Matters Most? 

The above analysis suggests not all design dimensions are equally important. 
Assuming the form factor of the text entry method is sufficiently small to qualify the 
text entry method as “mobile”, this section argues that, in general, five specific design 
dimensions are more critical than others. 

First, a text entry method that is not perceived as efficient from the start, i.e. does not 
have immediate efficacy, does not gain traction from users. Therefore such a text 
entry method has to be exceptionally strong to gain wide acceptance among users. For 
example, the Dvorak Simplified Keyboard has not been widely adopted even though 
there are claims that it is both faster and more comfortable than QWERTY. However, to 
invest in Dvorak the user needs to invest a significant amount of time to re-learn 
touch typing on the new layout. Because the Dvorak layout is not commonly used few 
users apparently felt the required amount of invested work would be worth it. See 
David [1985] and Liebowitz and Margolis [1990] for an in-depth discussion on the 
controversy of Dvorak vs. QWERTY. 

Two other important design dimensions are entry rate and error. Because of the 
inherent speed-accuracy tradeoff in human performance in general, and text writing in 
particular, these design dimensions cannot be separated out. Assuming errors are 
within a tolerable level among users, entry rate should naturally be as fast as possible. 
A higher entry rate allows user to focus on text composition rather than being 
undermined by user interface limitations. 

Three other critical design dimensions are comfort, the learning curve, and how 
engaging the text entry method is perceived by users 

An uncomfortable method is inadequate if there are better alternatives. The telephone 
keypad on mobile phones is not comfortable for extended text messaging use, yet text 
messaging is highly popular. Since no compelling alternatives compatible with the 
mobile phone form factor has attracted the interests of mobile phone manufacturers, 
users have to suffer. 

The learning curve of a text entry method has some importance, especially if the text 
entry method is underperforming initially. The learning curve from floor to ceiling 
entry rate should preferably be as short as possible. However, provided users quickly 
reach an acceptable entry rate, the amount of learning required to reach ceiling entry 
rate may not matter that much. 
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Finally, a perhaps underestimated design dimension is to what level the user is 
engaged in using the method, at least initially. In Experiment 3.2 participants liked 
writing with continuous shape writing more than thumb keyboard. They also thought 
it was more fun to use continuous shape writing. Such subjective ratings should be 
interpreted with care because the low sample size may have influenced the outcome. 
Never the less, if a text entry method is perceived as more fun by users initially the 
chance is higher that users put up with an initial practice period with lower text entry 
performance than desirable. 

Clearly, many of these dimensions and their relative ranking are not rigorous or 
scientific. There is no easy, or even possible, method to quantify, measure and rank 
design dimensions such as comfort and engagement except by subjective ratings 
because these design dimensions are likely composite design dimensions affected by 
many elements, some unknown. There is also no clear cut criterion held by every 
individual user on the level of immediate efficacy. The point in listing these design 
dimensions and listing them in a particular order is to set a context for discussion. 
What can be confidently said is the following. First, you cannot optimize for one 
design dimension alone. Second, a text entry method should be designed and 
evaluated with consideration of all design dimensions, but it is not necessary, or even 
desirable, to prioritize all design dimensions equally. 

6.4.2 Binary Decision Design Dimensions 

Two design dimensions stand out because they can be used to form a binary yes or no 
decision on whether the text entry method is applicable for particular requirements. 

If preparation time is a significant component, for example if the device is a mobile 
phone, a text entry method with long preparation time is unacceptable. This decision 
would immediately rule out fold-up and projection keyboards. 

If the text entry method must be able to be used one-handed, a two-handed text entry 
method can be immediately ruled out. In practice, while one-handed text entry is 
preferred in a mobile situation, if a text entry method can offer benefits that are 
beyond any one-handed technique (for example: thumb keyboard vs. keypad) the 
decision to go with a one-handed or two-handed text entry method must be guided by 
a design tradeoff. 

6.4.3 Guiding Design Dimensions 

The visual attention and cognitive resources design dimensions are important but 
partly subsumed into error and entry rate. The lack of empirical studies of text entry 
methods’ visual and cognitive demands from users makes it impossible to perform a 
reliable comparison between existing text entry alternatives. 

Also, visual attention and cognitive resources are design dimensions that are more 
useful as design dimensions that guide the design, than as comparative dimensions 
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between several text entry methods. Severe visual and cognitive overhead will 
manifest itself in quantitative measurements via reduced entry rate or increased error 
rate. 

Another guiding design dimension is device independence, advocated by Isokoski 
[2004a]. No effective text entry method is completely device independent yet. 
Isokoski and Raisamo [2004] investigates Quikwriting as a basis for device-
independent text entry but finds that it is too slow to be practical. To some extent the 
thumb keyboard and QWERTY software keyboard is device independent because of the 
ubiquity of the QWERTY layout. Although there are not exactly the same skills 
involved in touch typing on QWERTY and touch typing on thumb keyboard, it is 
plausible there is a high degree of skill transfer in between the systems. Further, 
MacKenzie and Zhang [1999] shows that even between the desktop QWERTY 
keyboard and the software QWERTY keyboard there is a skill transfer, because users 
initially typed faster on the software keyboard with the QWERTY layout than the 
unfamiliar optimized layout (OPTI). 

Finally, a fundamental guiding design dimension is whether the text entry method is 
specification or navigation-based. As alluded earlier, navigation-based text entry may 
be better if the underlying input device mechanism is limited in expressiveness, or 
users’ suffer from some level of motor impairment. 

6.4.4 Implementation and Commercially Related Design Dimensions 

Design dimensions such as task integration and character vs. word-level text entry 
concern the practical implementation efforts that need to be devoted to successfully 
transplant a text entry method onto a mobile device. These design dimensions can be 
viewed as tradeoffs – it is in general easier to integrate a single-character text entry 
into a device because devices normally have single-character keyboard support built-
in. 

Required localization efforts vary from method to method. Localization can be 
expensive but due to tight coupling between text entry and varying languages and 
cultures, localization overhead is almost impossible to completely avoid. 

Computational demands, support cost and manufacturing cost are mostly a matter of 
how much investment that can be poured into the assembly and customer support of 
the mobile device. Such design dimensions are to some extent critical, but the virtues 
of these design dimensions must be determined on a case-by-case basis. Many text 
entry methods are software-based and designed to take advantage of certain common 
mobile device designs: keypads, touch-screens, etc. These text entry methods do not 
add any assembly cost (except possibly licensing) to a device. On the other hand, 
keypads and thumb keyboards can be assembled relatively cheaply in a highly 
optimized process (e.g. [Liu and Wu, 2006]). 
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Market acceptance is essentially impossible to predict. However, a text entry method 
that demands extensive training effort from users initially but only offers an 
incremental performance benefit will have a hard time to gain traction. 

6.4.5 Floor Entry Rate Comparison of Text Entry Methods 

Is it possible to quantify the design dimensions and directly compare mobile text entry 
methods against each other? Some design dimensions do not lend themselves to direct 
comparison. For example comfort, although not a completely subjective measure is 
not studied enough to be reliably used to quantitatively compare different text entry 
methods against each other. 

However, entry and error rates are frequently reported in the literature. Therefore it is 
possible to select a subset of text entry methods and perform a quantitative analysis. 
In practice, this process is not as simple as it sounds because there is no de-facto 
standard experimental procedure for text entry evaluation. Such an experimental 
procedure would also be complicated, perhaps impossible, to develop because of the 
creative nature of text entry inventions and the different views and motivations that 
guide the inventors and researchers. 

Because there has been no consensus on participants’ error handling and how error 
rate is reported, it is problematic to compare the error rates from different text entry 
experiments. Further, entry and error rates are related in a speed-accuracy tradeoff, so 
entry rate comparisons are also questionstionable when error rates were not the same.  

Never the less, this section attempts to perform a baseline comparison of the floor 
entry rates achievable among a representative selection of text entry methods. 
Because the empirical material only allows a low resolution comparison, the floor 
entry rate measure is divided into three broad categories: low (effectively in the range 
of 0-15 wpm), medium (effectively in the range of 15-25 wpm) and high floor entry 
rate (effectively in the range of 25+ wpm). In the assignment of a text entry method to 
one of these categories a subjective judgment is made on to what extent error rate 
impacts the categorized floor entry rate. 

Table 6.1. Floor entry rate estimation for text entry methods. 

Text Entry Method Floor Entry Rate 
Graffiti Low 
Quikwriting Low 
Multi-tap Low 
T9 Low 
EdgeWrite with Completions Low 
Half-QWERTY Low 
Twiddler Low 
Software keyboard (QWERTY) Medium 
Software keyboard (OPTI) Low/Medium 
Thumb keyboard High 
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Continuous shape writing (QWERTY) Medium 
Continuous shape writing (ATOMIK) Low 
Dasher Low 

 
The Quikwriting measure is based of the initial 15-minutes of data reported in 
Isokoski and Raisamo [2004] where participants reached around 5 wpm with low 
error rate. T9 and EdgeWrite with completions measures are based on data from 
[Wobbrock et al., 2007]. Both methods had low error rate but also low entry rates 
during an initial 20-minute session (around 12.5 wpm for T9 and 10 wpm for 
EdgeWrite with completions). The half-QWERTY measure is from Matias et al. [1996] 
that reports of an entry rate around 13 wpm during the first 50 minutes of practice 
with an uncorrected error rate of 15.16%. The twiddler measure is from Lyons et al. 
[2006]. Lyons et al. [2006] reports of a low entry rate for the initial 20-minute session 
(around 6 wpm). The “total error rate” measure is problematic in Lyons et al. [2006] 
but the entry rate reported is so low that it doesn’t matter for this broad categorization. 
The software keyboard (QWERTY) and software keyboard (OPTI) measures are from 
[MacKenzie and Zhang, 1999]. Software keyboard (QWERTY) is classified as having a 
medium floor entry rate despite MacKenzie and Zhang [1995] reports that after 20 
minutes of practice participants reaches an average entry rate > 25 wpm, which is in 
comparison to other mobile text entry methods is very high. This is because the 
uncorrected error rate is around 3% in [MacKenzie and Zhang, 1999], which is a three 
times higher error rate than what is found for T9, EdgeWrite with completions, 
continuous shape writing and thumb keyboard (all with uncorrected  error rates 
around or less than 1%). The software keyboard (OPTI) is classified as having 
low/medium entry rate because average entry rate after 20 minutes of practice is > 20 
wpm, while error rate is around 2%, which is twice as high error rate as the one found 
in Experiment 3.2. The thumb keyboard, continuous shape writing (QWERTY) and 
continuous shape writing (ATOMIK) measurements are from (Experiment 3.2). Thumb 
keyboard is classified as a having high floor entry rate because Experiment 3.2 
showed that participants reaches > 25 wpm while the error rate was around 1%. 
Continuous shape writing (QWERTY) has medium floor entry rate because the average 
entry rate during the first 20 minutes is > 20 wpm, while the error rate is around 1%. 
The Dasher measure is estimated from Figure 14 in Ward et al. [2002]. Dasher is 
classified as having low floor entry rate because after 20 minutes participants on 
average only reached around 10 wpm. 

The floor entry rates for the above selection of text entry methods are fairly 
comparable because most studies were conducted on open text. The exception is the 
multi-tap and Graffiti studies, however these have been independently investigated by 
many researchers and all studies have found that both Graffiti and multi-tap are 
relative slow. The reader is referred back to the survey sections on Graffiti and multi-
tap for more details. All the other text entry method measurements stem from studies 
with approximately the same setup of participants writing open text phrases taken 
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from a corpus. The T9, EdgeWrite with completions, thumb keyboard, continuous 
shape writing (QWERTY) and continuous shape writing (ATOMIK) use the same corpus 
[MacKenzie and Soukoreff, 2003]. Half-QWERTY used phrases taken from an 
undisclosed novel. The software keyboard (QWERTY) and software keyboard (OPTI) 
used phrases from an undisclosed phrase set. Dasher used phrases taken from the 
novel Emma. 

From the floor entry rate analysis the thumb keyboard and the software keyboard, 
including continuous shape writing (on QWERTY), emerge as the most promising text 
entry methods with medium or high floor entry rates. The high initial entry rate 
benefits immediate efficacy, which as discussed in the Immediate Efficacy design 
dimension section is important, perhaps more important than the learning curve. 
Graffiti, Quikwriting, multi-tap, T9 and EdgeWrite with completions, half-QWERTY, 
twiddler, continuous shape writing (ATOMIK) and Dasher are the lowest performing 
text entry methods. 

6.4.6 Ceiling Entry Rate Comparison of Text Entry Methods 

Similar to the previous section, this section attempts to perform a baseline comparison 
of the ceiling entry rates achievable among a representative selection of text entry 
methods. Because the empirical material only allows a low resolution comparison, the 
ceiling entry rate measure is divided into three broad categories: low (effectively in 
the range of 0-20 wpm), medium (effectively in the range of 20-40 wpm) and high 
ceiling entry rate (effectively in the range of 40+ wpm). In the assignment of a text 
entry method one of these categories a subjective judgment is made on to what extent 
error rate impacts the categorized ceiling entry rate. 

Table 6.2. Ceiling entry rate estimation for text entry methods. 

Text Entry Method Ceiling Entry Rate 
Quikwriting Low 
Multi-tap Low 
T9 Low 
EdgeWrite with Completions Low 
Half-QWERTY Medium 
Twiddler Medium 
Software keyboard (QWERTY) Medium 
Software keyboard (OPTI) High 
Thumb keyboard High 
Continuous shape writing (QWERTY) High 
Continuous shape writing (ATOMIK) High 

 
The Quikwriting measure is based of the 20 15-minutes sessions of data reported in 
Isokoski and Raisamo [2004] where participants reached around 15 wpm with low 
error rate. T9 and EdgeWrite with completions measures are based on data from 
[Wobbrock et al., 2007] where participants reached 15 wpm with both methods after 
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had low error rate an average entry rate of 15-16 wpm after 15 20-minute sessions 
(error rate < 1%). The half-QWERTY measure is from Matias et al. [1996] that reports 
of an entry rate around 34.7 wpm and an uncorrected error rate of 7.37% after 10 50-
minute sessions. The half-QWERTY is assigned the medium category because of the 
high error rate combined with the fact that the entry rate is well below 40 wpm.  The 
twiddler measure is from Lyons et al. [2006]. Lyons et al. [2006] reports of an entry 
rate of 37.3 wpm after 13 hours of practice. The “total error rate” measure of 6.2% is 
problematic in Lyons et al. [2006]. Taking both entry rate and the high error rate in 
consideration the twiddler is assigned the medium category. The software keyboard 
(QWERTY) and software keyboard (OPTI) measures are from [MacKenzie and Zhang, 
1999]. After 20 20-minute sessions participants reached an average entry rate of 40 
wpm with the software keyboard (QWERTY). However, the uncorrected error rate was 
4.8%. In consideration of both these measures the software keyboard (QWERTY) is 
assigned the medium category but is borderline in the high category. After 20 20-
minute sessions participants reached an average entry rate of 45 wpm and had an 
uncorrected error rate of 4.2% with the software keyboard (OPTI). Taking both entry 
and error rate into consideration the software keyboard (OPTI)  is classified as having a 
high ceiling entry rate. The thumb keyboard, continuous shape writing (QWERTY) and 
continuous shape writing (ATOMIK) measurements are from (Experiment 3.3). Thumb 
keyboard, continuous shape writing (both QWERTY and ATOMIK) are classified as a 
having high ceiling entry rate because Experiment 3.3 showed that participants on 
average managed to write > 40 wpm with no errors. 

6.4.7 Comparison Redux – Non Quantitative Design Dimensions 

Not all design dimensions have a strong quantitative foundation. Never the less, as 
will soon be apparent they can still impact the choice of a suitable text entry method. 
In Table 6.3 five auxiliary design dimensions are listed: form factor, user engagement, 
one vs. two-handed, specification vs. navigation, and robustness. These design 
dimensions are chosen because they are non-quantitative design dimensions that 
directly impact the user experience. Because comfort is understudied and therefore 
any judgment of comfort would be arbitrary, comfort is left out of the following 
comparison. The design dimensions considered are to some extent highly subjective. 
For example user engagement cannot be reliably measured in a small sample 
controlled experiment and much less compared across different experiments. Software 
keyboards are assigned low user engagement because research has revealed that users 
find them tedious to use [Zhai, Sue and Accot, 2002]. The thumb keyboard is 
assigned medium user engagement and continuous shape writing assigned high, based 
on the results obtained in Experiment 3.2 and 3.3. EdgeWrite with completions is 
assigned high user engagement because users’ preferred it in favor of T9. T9 is 
assigned medium user engagement because there is no user study where T9 is found 
to be very tedious. Quikwriting is assigned medium user engagement based on my 
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own estimate. The reader is advised to re-consider and perhaps re-assign the pre-
assigned design dimension values for the text entry methods in Table 6.3. 

Table 6.3. Comparison of non-quantitative design dimensions. 

Text Entry 
Method 

Form 
Factor 

User 
Engage.

One/Two 
Handed 

Spec. 
vs. 

Nav. 
Robust. 

Quikwriting Medium Medium Two Spec. Medium 
T9 Medium Medium One Spec. High 

EdgeWrite 
with 

Completions 
Small High One Spec. High 

Half-QWERTY Large Medium Two Spec. Medium 
Twiddler Large Medium One Spec. Medium 
Software 
keyboard 
(QWERTY) 

Medium Medium Two Spec. Low 

Software 
keyboard 

(OPTI) 
Medium Medium Two Spec. Low 

Thumb 
keyboard Medium Medium Two Spec. Medium 

Continuous 
shape writing 

(QWERTY) 
Medium High Two Spec. Medium 

Continuous 
shape writing 

(ATOMIK) 
Medium High Two Spec. Medium 

Dasher Medium High Two Nav. Low 
 

From Table 6.3 it is apparent that if very small form factor is required only EdgeWrite 
with Completions is applicable (within this subset of text entry methods). Also, 
EdgeWrite with completions is estimated to have the highest robustness because the 
EdgeWrite alphabet is explicitly designed for robustness [Wobbrock et al., 20003] 
and error rates with the isometric joystick-EdgeWrite were found to be low 
[Wobbrock et al., 2007]. However the actual robustness of the text entry method 
remains to be empirically verified. Price et al. [2006] results show that as soon as 
users are no longer stationary, error rates go up significantly for speech recognition, 
which suggests methods that require skilled motor behavior, such as joystick 
operation, may suffer even more in an actual empirical test situation. 

If a navigation-based text entry method is desired, for example if the input 
mechanisms available on the device are severely limited, Dasher is the only 
alternative among selected subset of text entry methods 
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In relation to the quantitative comparison both EdgeWrite and Dasher have rather low 
performance (no ceiling entry rate is available for Dasher). However, from the 
preceding analysis it is evident that depending on the requirements, other text entry 
methods with higher entry rates may not be applicable. 

Another interesting design dimension to consider is one-handed vs. two-handed 
interaction. All the quantitatively highest performing text entry methods require two 
hands. In contrast, the twiddler only requires one hand and has a competitive ceiling 
entry rate > 35 wpm. On the other hand, twiddler has a low floor entry rate. 

Clearly, different design dimensions can be traded off against others. In the end, the 
device and user experience requirements set the stage for a text entry method. From 
there, the text entry method should optimize quantifiable entry and error rates, or 
reconsider the basic assumptions if acceptable entry and error rates cannot be 
obtained. 

6.5 Conclusions 
This chapter introduces 22 design dimensions of mobile text entry. The analysis in 
this chapter shows that text entry development, evaluation and analysis is complex 
and multifaceted. Partly because of the diverse nature of mobile devices with a wide-
array of auxiliary input mechanisms and displays, text entry methods tend to favor 
different design dimensions, which in turn create difficulties on how to fairly evaluate 
text entry methods against each other. 

This chapter makes many implicit and hidden design dimensions in text entry research 
explicit. Some of these dimensions are highly subjective. However, this is not an 
excuse for arbitrary decisions, and subjectivity should not be a guiding principle if it 
can be at all avoided. By making hidden assumptions of all aspects of text entry 
research visible, these implicit and subjective design dimensions are forced up to the 
surface and require explicit motivation on how they impact the overall text entry 
method. It is easy in text entry to get blinded by entry rate alone.  

In summary, text entry method design is an engineering science and should be guided 
by fundamental principles. In this chapter I have attempted to construct and apply as 
much principled analysis of existing and in-development text entry methods as the 
state of the art allows. 

In a computer science essay celebrating ACM’s 50-year anniversary Dijkstra [1997] 
warns of watching the waves, and completely missing the tide. His example is the 
concept of program correctness where computer programs are mathematically 
modeled and verified as behaving correctly, rather than constantly patched and 
debugged without any higher guiding principles. 
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Given the multitude of incomparable entry and error rates in the literature, can we 
learn anything from Dijkstra? A first step towards a principled text entry field should 
be an effort to standardized experimental procedure, or at least standardized entry and 
error rate reporting. Further, the analysis of the design dimensions in this chapter has 
highlighted the many, and often conflicting, tradeoffs that are necessary to take when 
devising a text entry method. New text entry methods that are proposed should ideally 
be justified with regards to a weighted combination of these design dimensions.  



Chapter 7 

Conclusions 

This chapter is organized as follows. The first section summarizes the dissertation by 
answering the research questions posed in the introductory chapter. The second 
section presents limitations and future work. The last section marks the end of this 
dissertation with concluding remarks. 

7.1 Summary 
The introductory chapter states that the central hypothesis in this dissertation is that it 
is possible to combine three elements: software keyboard, language redundancy and 
pattern recognition, and create new effective interfaces for text entry and control. 

In relation to the research questions posed in the introductory chapter, this section 
proceeds by addressing each of them with references to the respective chapters and 
experiments where the research questions are answered in full. 

1. How are effective discrete and continuous shape writing systems engineered – 
from the user interface to the recognition algorithms? 

Chapters 2 and 3 describe how the user interfaces for discrete and continuous shape 
writing are designed. Chapter 4 describes the mathematical principles for effective 
continuous shape writing recognition. 

2. How effective are the discrete and continuous shape writing interfaces for text 
entry? 

Experiment 2.1 and 2.2 showed that linear discrete shape writing did not significantly 
increase entry rate or reduce error rate. Informed by these experiments the elastic 
discrete shape writing algorithm was devised. Experiment 2.3 indicated some possible 
advantage of discrete shape writing with this new algorithm for experts. An analysis 
of the errors committed by participants in Experiment 2.1 show that many of these 
errors could also be corrected with the new elastic discrete shape writing algorithm. 
Taken together these results suggest that discrete shape writing may be more useful in 
reducing errors rates than gaining significant entry rate improvements.  

Experiment 3.1 showed that, in an expanding rehearsal interval training paradigm, 
users learn on average 15 shapes for words in a 40 minute practice session, 
Experiment 3.2 showed that entry rate depended on the layout used for the software 

 181 



182 Discrete and Continuous Shape Writing for Text Entry and Control 

keyboard. The QWERTY layout resulted in significantly faster entry rates than the 
optimized ATOMIK layout. With QWERTY, users had an average entry rate of 25 wpm 
and an error rate around 1% after 35 minutes of practice. With ATOMIK, users had an 
average entry rate of 16.6 wpm and an error rate around 1% after 35 minutes of 
practice. It is not surprising QWERTY is initially faster than ATOMIK, given that users 
are familiar with the desktop keyboard QWERTY layout. In contrast to QWERTY, when 
using continuous shape writing on ATOMIK users are involved in a dual learning task 
where both the keyboard layout and the text entry method are novel to the user. 

Experiment 3.3 investigated the effect of accelerated novice performance. Experiment 
3.3 showed that novice users reached an average entry rate of 46.5 wpm with shape 
writing on QWERTY and 45.1 wpm with shape writing on ATOMIK with no errors. It is 
important to be aware that accelerated novice performance is not the same as expert 
performance or accelerated expert performance. The potential entry rate may be 
significantly higher than what was measured in Experiment 3.3. 

3. Can shape writing also be used as a control interface, and if so, how effective 
is it? 

Chapter 5 systematically examines methods to extend continuous shape writing to 
become an effective control interface. Experiment 5.1 shows that as a control 
interface, continuous shape writing is 1.6 times faster than pull-down menus. 

Experiments 5.2 and 5.3 investigate the effect of displaying a visual preview of the 
currently recognized command while the user is still articulating the shape for the 
command. Experiment 5.2 shows that visual preview does not slow users down and 
Experiment 5.3 shows that command preview leads to significantly lower error rates 
and shorter gestures when users enter new unpracticed commands. 

7.2 Limitations and Future Work 
This dissertation has shown that it is possible to construct software systems for both 
discrete and continuous shape writing that are practical and effective. The user 
interface and recognition technology presented represents the first stage of the shape 
writing evolution and will no doubt continue to evolve when the software systems are 
further investigated or delivered to users as a product. 

A limitation with the work is that Experiment 3.2 did not continue over several 
sessions (say 20 sessions). Therefore the extended learning curve of continuous shape 
writing is unknown. It is plausible the optimized keyboard layout (ATOMIK) would 
outperform the QWERTY layout with extended practice because MacKenzie and Zhang 
[1999] showed that users eventually typed faster with an optimized layout (OPTI) than 
QWERY. However, because Experiment 3.2 was short, it cannot be concluded whether 
shape writing is faster on ATOMIK or QWERTY, and if so, where the turnover point is. It 
is also not possible to tell how fast users write with either discrete or continuous shape 
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writing after extended practice. Because of the power-law of practice [Crossman, 
1959] it is likely that users write much faster than the entry rates measured after only 
35 minutes of practice.  

Further, after Experiment 3.2 was conducted my thinking about how to handle errors 
has changed. In Experiment 3.2 participants were not forced to correct errors because 
forcing participants to correct errors is psychologically demanding and participants 
can perceive the task as frustrating. On the other hand entry rates can only be 
practically compared across studies if no errors were allowed.  Between the two evils, 
it may be necessary to force participants to correct their errors because it is not clear 
how to compare text entry methods if they do not have the same uncorrected error 
rate. For example, if one text entry method reaches 10 wpm with a 1% uncorrected 
error rate and another text entry method reaches 15 wpm with a 2% uncorrected error 
rate, which one of these two text entry methods is better? Since there is no known 
methodologically sound method for converting uncorrected errors into entry rate, 
these two methods cannot be reliably compared. Therefore, the only reasonable 
approach is to force participants to correct all errors. 

The most important future work is to conduct a longitudinal learning curve study to 
find out how fast participants write after many sessions of practice. After Experiment 
3.2 was conducted continuous shape writing has been ported to mobile phones. 
Running a longitudinal experiment on a mobile phone is more interesting than 
running on a tablet computer because mobile phones are more common, and portable. 

7.3 Concluding Remarks 
In the 20th century the typewriter and the desktop keyboard out-competed the pen as 
the primary text entry device. Pens are versatile and fluent, but crippled by the slow 
speed of longhand writing. The long and fascinating history of shorthand reveals that 
devising an effective pen-based text entry method is very hard. Also, as is shown in 
Chapter 6, all pen-based text entry methods for computers, except the software 
keyboard, are slow. However, the standard software keyboard is a text entry method 
where expressive and fluid pen-gestures are replaced with tedious serial tapping, and 
thereby removes the point of having a pen-based interface in the first place. 

The work in this dissertation is a renewal of the pen interface. This dissertation has 
three main messages. First, it is possible to construct a pen-based text entry and 
control interface that is simultaneously fluid, fast and easy to learn. Prior to this 
dissertation only shorthand systems that were not machine-recognizable could fulfill 
two of these criteria simultaneously (shorthand was never easy to learn). Second, the 
immediate efficacy of a method, that is, users’ initial performance, is more important 
than the rate of increase of the learning curve. Continuous shape writing has 
immediate efficacy and thereby demonstrates that a text entry interface that is 
relatively complex and completely novel to users can still be effective from the start. 
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Third, text entry methods have complex and often conflicting requirements. Among 
22 design dimensions of mobile text entry, continuous shape writing delicately trades 
off these design dimensions. Continuous shape writing is more challenging to 
integrate with mobile devices because of novel error correction strategies. It also 
requires more computational power than simpler methods. Further it demands visual 
attention from users. On the other hand, it has a high entry rate and low number of 
uncorrected errors. Further, users are writing effectively with shape writing after 
minimal amount of practice and find it comfortable and engaging.  
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