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Abstract
We present a technique that enables continuous recognition and visualization of pen strokes and touch-screen
gestures. We describe an incremental recognition algorithm that provides probability distributions over template
classes as a function of users’ partial or complete stroke articulations. We show that this algorithm can predict
users’ intended template classes with high accuracy on several different datasets. We use the algorithm to design
two new visualizations that reveal various aspects of the recognition process to users. We then demonstrate how
these visualizations can help users to understand how the recognition process interprets their input and how
interactions between different template classes affect recognition outcomes.

Categories and Subject Descriptors (according to ACM CCS): I.5.5 [Pattern Recognition]: Implementation—
Interactive systems

1. Introduction

Pen stroke and touch-screen gesture interfaces enable new
text entry methods (e.g. [ZK03, KZ04]), new ways of issu-
ing commands (e.g. [AB10, BM08, KZ07, Li09, BZW∗09])
and new ways to create sketches (e.g. [ZM06, AN06]). As a
result, a variety of recognition algorithms have been devel-
oped (e.g. [Li10, AB10, KZ04, WAWL07, Rub91]).

However, a difficult problem with nearly all recognition-
based interfaces is that they cause uncertainty among users.
Due to noise inherent in human neuromuscular systems and
device sensors, users’ gestures are bound to be imprecise.
Therefore a user’s input risks being misrecognized by the
system. A particular challenge with recognition errors is that
they can appear unintuitive to users, even puzzling (see Kris-
tensson [Kri09] for a recent discussion on this in the context
of intelligent text entry methods). It has been observed that
users tend to trust systems less if they appear to work mys-
teriously or behave unpredictably (e.g. [TF99]). Therefore,
as a response, researchers have searched for ways to make
recognition algorithms more transparent to users.

Long et al. [JLR99] created a gesture design tool based
on a statistical recognition algorithm [Rub91]. The tool used
confusion matrices to help users understand bottlenecks in
the recognition process. Arvo and Novins [AN00] presented

a recognizer that continuously detected a few preset shapes
from a user’s partial trace and then morphed the gesture trace
into one of the preset shapes. Bau and MacKay [BM08]
presented Octopocus which shows dynamic guides that aid
users when gesturing commands. Later, Appert and Bau
[AB10] made Octopocus scale-invariant by estimating the
scales of gestures a priori.

In this work we contribute to the effort in making pen
stroke and touch-screen gesture recognition more transpar-
ent, and as an effect, perhaps more enjoyable and fascinat-
ing to users. We present an algorithm that estimates the pos-
terior probabilities of the user’s currently incomplete stroke
within a set of template classes. Using this algorithm we can
predict a user’s intended template gesture based on a partial
stroke. It enables us to provide continuous feedback to the
user while the user is producing a stroke. We suggest such
continuous feedback from the recognizer may help users in
understanding how the recognition process works. To this
end we demonstrate how we can use the posterior distribu-
tions provided by the algorithm to design two new visualiza-
tions of the recognition process.

We make the following contributions:

• We present a new template-based incremental recognition
algorithm for pen strokes and touch-screen gestures.
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• We show that turning angle is a more accurate recognition
feature than Euclidean distance. We also demonstrate that
by combining both features further small gains in accu-
racy can be obtained.
• We introduce an end-point bias term and show that this ad-

dition to the algorithm is crucial in order for incremental
template-based recognition to be as accurate as existing
baseline algorithms that recognize complete strokes.
• We describe how the incremental recognition algorithm

can be used to design new visualizations that reveal as-
pects of the recognition process to users.

2. Continuous Recognition

In this section we describe how the recognition algorithm
works. The algorithm infers the user’s intended template in
real-time while the user is producing a stroke.

2.1. Templates and Segments

A template ω j is a pair (ι,S), where ι is the label (for ex-
ample Copy) and S = {Si} is a set of segments describing
progressively increasing excerpts of the complete template
stroke. An individual segment S = [s1,s2, . . . ,sn]

T is a vec-
tor of n time-ordered points. The first segment has length l,
the second has length l× 2, the next l× 3, and so on, un-
til the last segment describes the complete original template
gesture (Figure 1).

Figure 1: A complete template (left) and the segments gen-
erated from it (right). The red dot indicates the starting po-
sition.

2.2. Recognition

Let Ω = {ωk} be the set of templates and let the point vector
I = [i1, i2, . . . , in]T represent the complete input pattern with
n sample points. We will refer to a partial input of I with i
points [i1, i2, . . . , ii]T as Ii.

For each new point at index i the system computes the
posterior probability for each template ω j ∈Ω using Bayes’
rule:

P(ω j|Ii) =
P(ω j)P(Ii|ω j)

∑k P(ωk)P(Ii|ωk)
, (1)

where P(ω j) is the prior probability, P(Ii|ω j) is the like-
lihood and the denominator is the marginalization term.

If there is no information on which templates are more
common than others we use a uniform prior. Otherwise, the
prior can be designed to incorporate information about the
task. For example, if the recognition algorithm is used to
detect gestural commands, certain commands (e.g. Copy)
are likely more frequently used than others. This informa-
tion can be provided to the recognition algorithm via the
prior. Another example is if the recognition algorithm is
used to enable users to enter text. For instance, a letter rec-
ognizer such as Graffiti or Unistrokes [GR93] can provide
language model information, such as letter frequencies, to
the recognition algorithm via the prior. Yet another text en-
try example is the gesture keyboard [KZ04,ZK03], commer-
cialized as ShapeWriter/Swype/T9 Trace/Flext9. A gesture
keyboard enables users to write text by sliding their fin-
ger over a touch-screen keyboard. These systems associate
touch-screen gestures to individual words. A prior enables
such algorithms to use language model information to influ-
ence recognition outcomes.

2.3. Likelihood

The likelihood is the probability that partial input Ii matches
a template ω j:

P(Ii|ω j) = Pl(Ii|ω j)E(Ii|ω j). (2)

Pl(Ii|ω j) is the likelihood of the user’s partial stroke be-
ing the best matching partial segment for the template ω j.
This likelihood is found by searching for the segment of the
template ω j that maximizes the likelihood of the distance
function D (defined in the next subsection):

Pl(Ii|ω j) = arg max
Sk∈S j∈ω j

D(Ii,Sk). (3)

E(Ii|ω j) is an end-point detection term we introduced to
bias the algorithm towards shorter templates in the case that
many templates share similar prefixes. We found that the fol-
lowing formula enabled the best performance:

E(Ii|ω j) = 1+κexp
(
−(1−D(Ii,Slast))

2
)
, (4)

where Slast is the last segment in the set of segments in
ω j. This last segment represents the complete template. The
intuition behind the end-point bias is to take into account
whether the user’s stroke matches a segment describing a
partial template or matches a complete template. If the stroke
describes a complete template then it is important that its
corresponding template class is prioritized higher than those
template classes whose best matches are segments represent-
ing incomplete templates.
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For example, in Figure 2 the user has articulated a partial
stroke (left) that matches either one of two templates’ prefix
segments, indicated as dashed blue lines (right). Without the
end-point bias there is not enough information provided to
the recognition algorithm to disambiguate these templates.
As a result, the predictions made by the recognition algo-
rithm may fluctuate between both templates arbitrarily. By
using an end-point bias, the recognition algorithm can dis-
ambiguate among several likely templates so that in the case
that the user’s input strongly matches a complete template
that template will be preferred. There are two free param-
eters that need to be properly set for this end-point bias to
work. The first is κ and the second is one of the variances in
the distance function D (described below). These parameters
are tuned on a training dataset.

Figure 2: An example of two segments (right) matching a
user’s stroke (left). The red dot indicates starting position.

2.4. Distance Function

The distance function is a combination of the probability
estimates of two similarity measures between the point se-
quences I and S:

D(I,S) = exp

(
−

[
λ

(
x2

e

σ2
e

)
+(1−λ)

(
x2

t

σ2
t

)])
. (5)

The first measure (xe) is the mean Euclidean distance be-
tween corresponding points in I and S. The second measure
(xt ) is the mean turning angle between corresponding lines in
I and S. These measures are explained in the next subsection.
σe and σt are variance estimates for both measures. We treat
the similarity measures as Gaussians since we assume the
sums of point-wise comparisons in the Euclidean distance
measure and the sums of line-wise comparisons in the turn-
ing angle measure are sums of independent and identically
distributed Gaussian random variables. Since the number of
summands in the similarity measures tends to be high (since
they are related to the number of sampling points) we assume
(via the central limit theorem) that the similarity measures
themselves are Gaussian.

λ∈ [0,1] is a mixture weight that controls the relative con-
tribution for both similarity measures. Strictly speaking we
can omit λ if we are only interested in the optimal relative
contribution of both similarity measures since the ratio of
the variances suffices to control this. However, estimating
the variance for each feature separately and subsequently

finding an optimal mixture weight makes the relative con-
tribution of each feature more transparent and enables us to
selectively turn on or off an individual feature without hav-
ing to retune its individual variance.

2.5. Similarity Measures

There are many choices of similarity measures (or features)
for computing a similarity between two point sequences. In
this paper we investigate two of the most popular features:
Euclidean distance and turning angles. These features have
been demonstrated to provide accurate results in a variety of
applications (e.g. [KZ04, WAWL07, AB10]).

For both similarity measures, let a1,a2, . . . ,an and
b1,b2, . . . ,bn be two sequences of points, resampled so that
they have an equal number of sampling points.

The first similarity measure is the mean Euclidean dis-
tance between all corresponding points:

xe =
1
n

n

∑
i=1
||ai−bi||. (6)

Mean Euclidean distance has been widely used in gesture
recognition (e.g. [KZ04, WAWL07]). It requires both point
sequences to be normalized. We do this by translating them
so that their centroids are at the origin of the coordinate sys-
tem and by scaling one of them so that the diagonal of the
bounding box is unity whilst preserving the aspect ratio.

The second similarity measure computes the mean turning
angle between two point sequences using a fixed reference
axis:

xt =
1

n−1

n

∑
i=2

dt(ai,ai−1,bi,bi−1), (7)

where dt is the the angular difference in radians for two
corresponding line segments that connects the ith and i−1th
corresponding points.

This similarity measure was originally proposed by
Niblack and Yin [NY95] for image-lookup databases and
was later used by Appert and Bau [AB10] to predict the
scale of gestures for the command selection technique Oc-
topocus [BM08].

2.6. Filtering

We also filter the posterior probabilities with a moving aver-
age to make the predictions slightly more stable. We found
that a window over the last five predictions provided a good
balance between responsiveness and stability.
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3. Evaluation

To test the accuracy of the incremental recognition algo-
rithm we set out four research questions. First, does using
Euclidean distance and turning angle features result in dif-
ferences in accuracy? Second, can we obtain a gain in accu-
racy by combining both of these features? Third, is it pos-
sible to enable a template-based algorithm to predict users’
intended template classes without sacrificing accuracy when
recognizing complete templates? The incremental recogni-
tion algorithm performs many more comparisons and there-
fore risks having an increased number of recognition errors
compared to a baseline algorithm that only identifies com-
plete strokes. Fourth, does the introduction of an end-point
bias increase the accuracy of the incremental recognition al-
gorithm?

3.1. Method

To answer these research questions we collected in total
2512 gestures from 16 participants recruited from a univer-
sity campus.

We used a Toshiba R15 Tablet PC with a capacitative pen
for collecting stroke data. The 14.1" Tablet PC screen had a
resolution of 1024 × 768 pixels and was configured to be in
portrait mode.

The stroke sets used were the 16 gestures used to demon-
strate the $1 recognizer [WAWL07], ten gestures for partic-
ularly difficult-to-recognize words in the gesture keyboard
ShapeWriter (now T9 Trace/Flext9) [KZ04], and the 27
Graffiti gestures for the letters A–Z and the space character.
We chose these stroke sets because they represent a variety
of tasks (input of commands, words, or letters). Participants
produced each of the $1 and gesture keyboard stroke sets five
times consecutively and each of the gestures in the Graffiti
stroke set once. Figure 3 shows these stroke sets.

Before participants produced a stroke they were shown an
animation of it so they would know how to draw it. We asked
the participants to produce the strokes as quickly and as ac-
curately as possible. No recognition feedback was provided.
We then split the collected gestures into two datasets. The
first consisted of the first eight participants’ strokes and the
second consisted of the other eight participants’ strokes. We
used the first dataset as a training set to tune optimal parame-
ter values for the algorithms. The second dataset was used as
the test set for the evaluation of the recognition algorithms.

3.2. Results

We first investigated the accuracy of complete strokes. Ta-
ble 1 shows the accuracy for the different recognizers. We
tested using just one similarity measure (Euclidean distance
or turning angle), as well as combining them using optimal
mixture weights learned from the training data.

Figure 3: The stroke sets used for evaluating the algorithms.
Top: The gesture keyboard stroke dataset. Middle: The $1
gesture set. Bottom: The Graffiti alphabet.

Recognizer Accuracy ∆

Baseline (E) 91.9% ·
Baseline (T) 94.0% 2.1%
Baseline (E+T) 94.3% 0.3%
Incremental w/o end-point bias (E) 87.2% ·
Incremental w/o end-point bias (T) 91.3% 4.1%
Incremental w/o end-point bias (E+T) 92.1% 0.8%
Incremental with end-point bias (E) 90.8% ·
Incremental with end-point bias (T) 93.9% 3.1%
Incremental with end-point bias (E+T) 94.5% 0.6%

Table 1: Accuracy and absolute gains in accuracy when rec-
ognizing complete gestures. E: Euclidean distance only, T:
turning angle only, E+T: combination.

The baseline was implemented as a standard stroke rec-
ognizer, which in our terminology means that each template
is only represented by a single segment that consists of the
complete template for the stroke. Table 1 shows that regard-
less of the algorithm, the widely used mean Euclidean dis-
tance measure performed notably worse than the mean turn-
ing angle measure. Combining the two provided a small but
consistent gain for the baseline as well as for both variants
of incremental recognition.

Table 1 also shows that introducing an end-point bias was
highly effective in retaining the same accuracy as the base-
line when recognizing complete strokes. Without the end-
point bias, accuracy was consistently lower when perform-
ing incremental recognition in comparison to the baseline.
The fact that incremental recognition using end-point bias
managed to have slightly higher accuracy than the baseline
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Percent IncET IncT IncE ComET ComT ComE IneET IneT IneE
10% 44.54% 43.99% 38.80% 6.74% 7.10% 5.28% 43.72% 44.90% 35.61%
20% 50.46% 57.47% 39.71% 8.20% 8.11% 6.65% 50.27% 57.56% 37.07%
30% 57.01% 61.57% 44.35% 9.11% 10.20% 7.38% 55.65% 60.75% 42.08%
40% 56.83% 56.28% 46.17% 11.02% 11.93% 8.29% 54.64% 55.56% 44.17%
50% 65.48% 67.30% 54.92% 14.66% 15.85% 10.56% 64.03% 67.12% 52.73%
60% 74.95% 75.96% 69.22% 26.05% 28.69% 17.21% 75.32% 77.32% 65.76%
70% 80.97% 81.60% 73.86% 40.44% 41.53% 34.61% 81.33% 83.70% 72.40%
80% 81.06% 84.15% 70.58% 68.85% 67.76% 58.65% 84.06% 86.79% 73.41%
90% 90.89% 90.80% 85.15% 90.80% 90.44% 87.98% 93.26% 93.26% 88.98%

100% 92.08% 91.26% 87.16% 94.26% 93.99% 91.89% 94.54% 93.90% 90.80%
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Figure 4: Accuracy as a function of the proportion of the complete stroke for different combinations of similarity measures.
Left: Only Euclidean distance. Middle: Only turning angle. Right: Combination of Euclidean distance and turning angle.

is impressive considering it had to consider a total of 787
segments compared to only 53 segments for the baseline.

Figure 4 shows accuracy as a function of the proportion of
the complete stroke. This provides us with a measure of how
well the different recognition algorithms are predicting the
user’s intended stroke. We used the same parameter settings
for the algorithms as in the previous test. The incremental
recognition algorithm vastly outperforms the baseline un-
til the user has essentially produced the entire stroke for
the complete template. Even when the gesture is complete
(i.e. at 100% in Figure 4), the incremental recognition algo-
rithm with end-point bias has slightly higher accuracy than
the baseline (0.2%). For the incremental algorithm with end-
point bias, the mean accuracy is over 50% after the user has
only gestured 20% of the complete template gesture (Figure
4).

4. Visualizations

The incremental recognition algorithm enables us to track
how the posterior probabilities for different template classes
change as a function of the user’s stroke articulation.

Figure 5 plots the posterior probabilities for four template
classes as a function of a user’s stroke articulation. The bot-
tom of Figure 5 shows the four template classes in the sys-
tem. The top figure shows how the posterior probabilities
vary as the user is gradually producing the complete stroke
for template 4. The panels below the plot show versions of
the partial stroke at certain numbers of received sampling
points.

The plot in Figure 5 demonstrates the effect of the end-
point bias in the incremental recognition algorithm. Initially
template 1 has the highest probability although all four tem-
plate classes consist of an almost identical vertical stroke
downwards. This is because the end-point bias prioritizes
complete strokes over incomplete strokes. However, once
the user begins to move right (at the point marked “A” in the
plot) the probability for template 1 decreases while the prob-
abilities for templates 2 and 4 increase. Although templates

2 and 4 are both very similar to the user’s partially produced
stroke, the recognition algorithm prioritizes template 2 as it
represents a complete stroke. However, once the user begins
to move down (at the point marked “B” in the plot) template
4 becomes the most likely candidate.

Figure 5 demonstrates how the incremental recognition
algorithm can provide end-users and software designers with
more in-depth knowledge about the recognition process. We
now proceed to present two new visualizations that can be
integrated into developer tools and interfaces for end-users.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 5 10 15 20 25 30 35 40 45 50

P
ro
ba
bi
lit
y

Number of recieved sampling points

A

B

1
2
3
4

1) 2) 3) 4)

Figure 5: Above: Probabilities for different template classes
as a function of a user’s partial stroke for template 4. Below:
The four templates. Solid dots indicate starting positions.

4.1. Linear Prediction

The first new visualization is linear prediction. The prob-
ability distribution obtained by the incremental recognition
algorithm enables us to indicate aspects of the probability
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landscape at hypothetical points to the user. Linear predic-
tion shows this space in relation to a preset template, such as
the current best match, or a particular template indicated by
the user.

Figure 6 illustrates linear prediction for a template set
consisting of only two templates (shown at the bottom of
Figure 6). The user has indicated that the leftmost template
should act as the reference template. The top of Figure 6
shows the user’s partial gesture in black (the starting point
is indicated as a solid dot). When the user pauses, linear
prediction begins to sample the probability that the refer-
ence gesture would be correctly recognized if the user’s next
straight stroke segment is at a certain point. If the user con-
tinues pausing, the prediction display expands as the algo-
rithm evaluates more and more possible locations. The color
of a point indicates whether the reference template would
be the best match if the user moved linearly to this position.
The color of a point is determined by calculating the propor-
tion of the reference template’s probability at a given point in
relation to its closest competitor. The most probable points
are in green and the least probable points are in red. The
visualization in Figure 6 indicates to the user that a stroke
to the right will match a partial or complete version of the
reference template. If the user moves down the outcome is
undetermined. If the user moves left the reference template
will not be the top match.

Figure 6: Above: An example of linear prediction. Below:
The templates in the system when the figure above was gen-
erated. Solid dots indicate starting positions.

Figure 7 demonstrates linear prediction visualization on
a more realistic dataset. Figure 7 was generated by using
the $1 gesture set [WAWL07] (see Figure 3). In the figure
the user is attempting to produce a stroke corresponding to
the reference template 12 in the $1 gesture set (shown be-
low Figure 7; also cf. Figure 3). As the user is producing the
stroke the green and red areas show nearby points that are
likely to result in the reference template being accurately and
inaccurately classified respectively. When the stroke is com-
pleted the visualization indicates to the user that the stroke
is complete. The red ring around the user’s last sampling
point means that if the user continues to produce a stroke,
that stroke will not be correctly classified as the reference
template, no matter which direction the stroke turns.

Figure 7: Above: A real-world example of linear predic-
tion using the $1 gesture set. Below: The reference template.
Solid dots indicate starting positions.

Figure 8 illustrates linear prediction with a varying refer-
ence template. Here the system changes the reference tem-
plate whenever a new template becomes the most probable.
In Figure 8 the user is attempting to produce a stroke cor-
responding to template 12 in the $1 gesture set (indicated
below Figure 8 as 12∗; also cf. Figure 3). Initially, in the top-
left frame, template 2 is the most probable and is therefore
acting as the reference template. In the next top frame tem-
plate 12 (the intended template) is the most probable tem-
plate and therefore the reference template changes to it. In
the top-right frame, template 11 is the most probable tem-
plate and the reference template changes again. Thereafter
the user’s intended template 12 becomes the most probable
template throughout the rest of the user’s production of the
stroke. The difference between using static or varying refer-
ence templates is evident by comparing the top-right frame
from Figure 7 with the top-right frame from Figure 8.

4.2. Preview

The second visualization is preview. The incremental recog-
nition algorithm makes it possible to visualize a preview of
the current templates that are most likely to correspond to
the user’s partial stroke. Figure 9 shows the user’s trace in
black with the starting position indicated by a solid dot. In
the beginning, several templates have prefix segments that
match the user’s partial stroke. The ones that have the high-
est probabilities are overlaid onto the user’s stroke and al-
pha blended proportionally to their posterior probabilities.
The templates that are represented by these overlays are first
recognized invariant of scale and translation. We thereafter
scale and translate them so that they achieve a best fit in re-
lation to the user’s partial stroke. This scale-independence
assumption can be observed in Figure 9, in which templates
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12∗) 2) 11)

Figure 8: Above: A real-world example of linear prediction
using the $1 gesture set with a varying reference template
that is set to the currently most likely template. Below: The
reference templates. Solid dots indicate starting positions.

are predicted and consequently visualized in different scales
to the user.

The overlays are first translated so that the first point of
the template corresponds to the first point in the user’s par-
tial gesture. We then subdivide the template into partitions
divided up according to high curvature points in the tem-
plate. Recall that for each recognized template a particular
segment (call it S∗) matched the user’s partial gesture the
best. We now find the partition of the template that is the
closest to S∗ using the distance function defined earlier in
this paper. The best matching partition of the template is then
scaled to fit the user’s partial stroke. Since we have now ob-
tained the proper scale we can overlay the entire template
onto the user’s partial stroke.

Figure 10 shows another example of preview. The user
is producing the stroke for the letter “M”. The stroke set in
Figure 10 consists of all the 27 templates in the Graffiti al-
phabet.

On the surface preview is similar to the scale-invariant
command selection technique Octopocus [BM08, AB10].
Octopocus is an interface that uses dynamic guides to help
users explore and learn a well-separated command vocabu-
lary. In contrast to Octopocus, our incremental recognition
algorithm and accompanying visualization performs a com-
plete pattern match against all templates each time a new
sampling point is received from the user. Further, our tem-
plates can be arbitrarily defined polylines. Therefore, our
technique can be used for purposes other than for issuing
commands. For instance, it could be used to enable users to
write words using gesture keyboards [KZ04, ZK03] by only
articulating partial gestures for words. It could also be used
to enable users to enter prefixes of arbitrary free-form ges-
tures or gesture keyboard commands [KZ07]. It may also
assist users of certain sketch recognition systems which at-

tempt to recognize individual strokes in a sketch as the user
is producing them.

Figure 9: Above: An example of overlay with correct scale
estimation for arbitrary strokes ($1 stroke set). The black
trace shows the user’s partial stroke developing during six
frames. Below: The template the user is producing a stroke
for. Solid dots indicate starting positions.

Figure 10: Above: An example of overlay with correct
scale estimation for arbitrary strokes (Graffiti stroke set).
The black trace shows the user’s partial stroke developing
during six frames. Below: The template the user is produc-
ing a stroke for. Solid dots indicate starting positions.

5. Discussion and Conclusions

In this paper we first presented a new probabilistic algorithm
for continuous recognition of pen strokes and touch-screen
gestures. Our algorithm extends existing template matching
algorithms [KZ04,WAWL07,NY95,AB10]. We investigated
two popular features, Euclidean distance [KZ04, WAWL07]
and turning angle [NY95, AB10]. We found that the turning
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angle measure consistently resulted in higher accuracy than
Euclidean distance (see Table 1). Since many recognizers
use the latter measure we urge their designers to reconsider
this choice. We also suggest that template-based incremental
recognition algorithms should introduce an end-point bias.
Our evaluation showed that introducing this bias resulted in
incremental recognition being equally accurate as a baseline
recognition algorithm that only recognizes complete strokes.
This was despite the incremental recognition algorithm hav-
ing to compare many more subsegments. Without the end-
point bias, incremental recognition provided lower accuracy
than the baseline (see Table 1).

We presented two new visualizations that take advantage
of the incremental recognition algorithm. The first visualiza-
tion is linear prediction. It uses the incremental recognition
algorithm to visualize whether the user’s ongoing stroke will
be recognized as a reference template at hypothetical future
positions. It may enable users who design stroke templates
to better understand characteristics of the template sets they
are designing. It has previously been observed that designers
find it very difficult to understand how the recognition pro-
cess affects the design of a template set [JLR99]. The sec-
ond visualization is preview. It overlays the currently most
likely templates that match the user’s partial stroke onto the
user’s pen or finger trace. This technique may be useful to
enable users to only articulate a partial stroke for an in-
tended action. For instance, it may enable users of gesture
keyboards [ZK03, KZ04] to write faster by only articulat-
ing short prefixes of gestures for common words. These are
just a few examples of how the incremental recognition al-
gorithm can be applied. We hope the algorithm will find its
way into a wide variety of pen stroke and touch-screen ges-
ture interfaces.

The source code for the incremental recognition algo-
rithm is released under an open source license and can be
downloaded from:

http://pokristensson.com/increc.html.
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