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ABSTRACT
We present a video-based gesture dataset and a methodol-
ogy for annotating video-based gesture datasets. Our dataset
consists of user-defined gestures generated by 18 participants
from a previous investigation of gesture memorability. We
design and use a crowd-sourced classification task to anno-
tate the videos. The results are made available through a
web-based visualization that allows researchers and designers
to explore the dataset. Finally, we perform an additional de-
scriptive analysis and quantitative modeling exercise that pro-
vide additional insights into the results of the original study.
To facilitate the use of the presented methodology by other
researchers we share the data, the source of the human intel-
ligence tasks for crowdsourcing, a new taxonomy that inte-
grates previous work, and the source code of the visualization
tool.
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Gesture design; user-defined gestures; gesture elicitation;
gesture analysis methodology; gesture annotation; gesture
memorability; gesture datasets.

ACM Classification Keywords
H.5.2. Information Interfaces and Presentation: User Inter-
faces—Input devices and strategies

INTRODUCTION
Gesture-based interfaces are already common in a variety of
devices such as game consoles, mobile phones, TVs and pub-
lic displays and the study of gesture interfaces is a growing
area of research in human-computer interaction. Gesture in-
terface research often requires studies with human partici-
pants who perform or invent gestures that are later analyzed
by researchers. The data can for instance be used to recom-
mend better gesture sets for control of specific systems, or to
allow designers to make better decisions about the gestures
that they integrate (e.g., [7, 44]).

Gestures collected in experiments are often video recorded,
but most of the time the rich data that was collected (for ex-
ample, the videos of gestures) are only analyzed once and
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with the specific focus of the paper that motivated the study.
Data reuse represents a lost opportunity in research—other
researchers can potentially extract new insights from video,
and the accumulation of data from different sources can po-
tentially open up new types of analysis, such as quantitative
modeling (which typically demands large amounts of data)
and meta-analyses. However, sharing high-quality datasets
requires significant amounts of work to annotate it for anal-
ysis purposes, and to ensure it is easily accessible to other
researchers.

In this work we set out to contribute an example of sharing
and annotating gesture data and creating a tool that facilitates
explorations and further analyses. We acquired the data from
our recently published study on gesture memorability [26].
We then designed and developed a crowdsourcing task to an-
notate the data. The annotated data is made available through
an on-line visualization and exploration tool and further ana-
lyzed using machine learning techniques.

The main contributions of this paper are:

• a dataset of user-defined gestures;

• a crowdsourced gesture-annotation procedure;

• an integrative taxonomy for hands-and-arms gesture clas-
sification;

• an interactive visualization tool to access the annotated
dataset;

• a complementary analysis, using machine learning tech-
niques, of the annotated gesture dataset.

We put special emphasis on sharing the annotated videos, the
source files that enable the crowdsourcing of the categoriza-
tion task, and the exploration web application source in order
to reduce the effort required of other researchers to share their
data and to enable further analysis and research of existing
and future gesture datasets.

RELATED WORK
Gesture-based interfaces were first adopted in 2D input de-
vices (see [46] for a recent review) for a number of applica-
tions such as issuing commands (e.g., [4, 5, 18]), and writing
text (e.g., [3, 10, 17, 27]). The popularisation of 3D sensors
and accelerometers has also spurred extensive research on 3D
gestures (e.g., [16, 35, 38, 39]) and commercial applications
that are controlled via in-air gestures are now commonplace.
Three areas of related research bear direct relevance to our
work: (1) how gestures are designed or selected for specific
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applications, (2) gesture memorability, and (3) existing ges-
ture sets, taxonomies and classifications.

Gesture Design Process
The variety of distinct gestures that could be recognized by
a gesture-based system is very large, even in gesture-based
interfaces that only depend on 2D input. A suitable gesture
subset must then be defined and selected, for which several
research groups have provided tools (e.g. [15, 19, 20, 45]).
These tools allow interface designers and implementers to
easily create gesture sets that are recognizable by the system,
but they do not address the question of how to choose gestures
that are appropriate for end-users.

Based on the concept of user elicitation [28], Wobbrock et al.
[44] proposed to define gesture sets for a multitouch interface
via a systematic process in which a representative sample of
the intended end-users are asked to create gestures for specific
actions. The final gesture set is the set with maximum user
agreement in the sample of the intended end-users. The mo-
tivation behind gesture elicitation is that it results in gesture
sets that are better related to the actual needs and expectations
of the intended users of the system [25]. Gesture elicitation
has often been used for on-air gestures [37], multi-touch ges-
tures [7, 8, 22, 28, 44], unistroke gestures [43], pen-gestures
[9], foot gestures [1] and mobile motion gestures [35]. For a
discussion on the advantages and possible biases of the tech-
nique see also [24].

In addition to gesture sets chosen a priori by designers
(e.g. [23]), or defined a priori by a group of participants in
a gesture elicitation exercise, gestures can also be defined by
users themselves. This approach has several advantages, in-
cluding better accessibility for people with impairments [2,
26], better memorability [26], familiarity for the access of
information [30], and might also offer added expressivity in
artistic interfaces [21] (limitations of this approach are dis-
cussed in [26] and [29]). This paper focuses on a dataset of
gestures that were user-defined and meant to be remembered
(a subset of the gestures in [26]).

Gesture Memorability
Researchers studying gesture-based interfaces have focused
on the study of several desirable characteristics of gesture
sets, including learnability, discoverability, immediate usabil-
ity [19], and memorability [26].

This paper presents data focused on gesture memorability,
which is a critical characteristic of gesture sets. Prior work
on gesture memorability includes Cockburn et al. [6], who
in the context of single-stroke gestures studied the effect of
inducing effort on overall gesture memorability. Their exper-
iments showed that an effort-inducing interface improved re-
call rates but it was also considered less enjoyable due to the
additional effort. A study by Appert and Zhai [4] analyzed
how users learn and remember keyboard shortcuts compared
to gestures, reporting that the latter category was more memo-
rable. More recently, Jansen [14] investigated how well users
can remember interaction gestures for controlling a TV set,
based on different teaching methods. Jansen [14] reports that
the gestures perceived as most intuitive by the participants

were associated with objects from the TV interface or with
the gestures task description. Jansen [14] states that users
can correctly remember 61-71% of ten (for them unfamiliar)
user-elicited gestures depending on the teaching method used
to train them. However, there is no information on the specific
features that characterize the most memorable gestures.

In this paper we continue Nacenta et al.’s [26] gesture memo-
rability work, which investigated how participants remember
three free-form gesture sets designed for three different appli-
cations: a word processor, an image editor and a web browser.
For each application, the authors chose 22 different actions
for which to design the gestures that are currently still rep-
resentative for most existing activities available on software
systems. Nacenta et al.’s [26] study distinguishes between
pre-designed gestures (created by designers), stock gestures
that are system generic (i.e. not designed for an specific ac-
tion), and user-defined gestures that are created by the users
themselves. A gesture was considered correctly recalled (or
memorable) if it was reproduced with the same hands, fin-
gers and overall path and timing. If the gesture was recalled
with small articulation differences (e.g. different finger) but
maintaining most of the characteristics of the original gesture,
then it would be judged as close. Otherwise, if too few sim-
ilarities were found between the original and the reproduced
gesture, it would be considered as incorrectly recalled by the
participant. The experiments conducted in the study revealed
that self-defined gestures were more memorable (up to 44%
more gestures recalled than with the pre-designed gestures)
and preferred by users. Although these results are important,
they offer little guidance regarding the specific characteris-
tics that make gestures memorable. This work focuses on
enabling further analysis of memorability through the anno-
tation, sharing and descriptive analysis of the set of gestures
that were generated by participants in [26].

Taxonomies and classifications
The first step to understand why some gestures are better
than others is to define criteria (dimensions) that separate
those gestures into relevant categories. Multiple such cate-
gorizations exist. Quek [33] provides a well-cited classifica-
tion scheme that differentiates acts (where the gesture’s shape
and movement is directly related to the intended action) from
symbols (where the gesture is arbitrary, but linked to its ref-
erent by a language agreed-upon in advance). Pavlovic [31]
expands on this work by adding manipulative gestures and
putting Quek’s [33] categorization within the broader con-
text of human movements. Focusing on the quality and mor-
phology of gestures, Laban [41] created a notation system to
describe dance performances that can be applied to descrip-
tion of human gestures. Dimensions derived from Laban’s in-
clude distinctions of speed, continuity and effort of gestures.
Vatavu and Pentiuk [40] and Ruiz et al. [35] describe cate-
gorizations that distinguish between information contained in
posture and movement.

A more recent taxonomy is the one created by Wobbrock et
al. [44] for their seminal elicitation study of multi-touch ges-
tures. They manually classified the gestures obtained into
different dimensions such as form, nature, binding and flow,
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which allowed them to point out that participants of their
study preferred single hand gestures to two-hand gestures and
that their gestures are influenced by desktop idioms. Simpler
categorizations are implicit in the work of Epps et al. [7],
who distinguished among common hand shapes and pointing
behaviors (e.g. L-shape, C-shape, fist), and Jansen [14], who
identified a set of features relevant for interactive TVs.

Available Gesture Sets
In addition to the final gesture set elicited by Wobbrock et
al. [44], others have shared proposed gesture sets for specific
applications (e.g. multi-touch graph manipulation [36], in-
teraction with omni-directional video [34]), and also stock
sets for use in any application [11]. These are generally de-
scribed through sequences of illustrations, and only occasion-
ally through video. To our knowledge, we are the first to
share a full data set of videos as created by participants for
specific actions. Moreover, we also provide the labeling (cat-
egorization) of each gesture according to a new classification
scheme that summarizes existing taxonomies, enabling fur-
ther research and analysis of the gesture set.

GESTURE CLASSIFICATION METHOD
The starting point of our work is a gesture corpus. We use
the self-defined subset of Nacenta et al.’s third study in [26],
which consists of 396 user-defined, video recorded 3D ges-
tures performed by 18 participants for 66 different actions
(22 actions each). The gestures were created by the partic-
ipants so that, on request, they could trigger a set of 66 differ-
ent actions that were selected from common features out of
three applications: a web browser, a word processor and an
image editor. Each participant only created gestures for one
of the three applications. Participants knew that they would
be asked to remember the gestures at the time of gesture cre-
ation. As a result of the experiment, each gesture was anno-
tated with a label that indicates whether the gesture was re-
membered in a subsequent test. This memorability label has
three possible values: memorable (the gesture was remem-
bered), not-memorable (the gesture was not remembered) or
close (the gesture was only partially remembered). Addition-
ally, due to the structure of the experiment, each gesture is
annotated with a label that indicates whether or not the ges-
ture was reinforced. Reinforced gestures comprised half of
the gesture set that a participant would have to create (11 ges-
tures), but instead of being tested only on the next day, rein-
forced gestures were also tested (with correctness feedback)
immediately after all gestures were created. See their original
experiment paper [26] for details.

In most previous studies that classify user-defined gestures
the authors themselves classified the gesture sets [44, 14].
This approach does not scale well as the number of gestures
go up and is also subject to a possible strong author bias. In
this paper we propose an alternative method suitable for anno-
tating large sets of gestures by using a crowdsourcing service
to obtain the classifications.

Gesture Taxonomy
The purpose of the categorization (enabling further research)
and the chosen methodology imposes a number of constraints

that no existing gesture categorization covers completely.
This forced us to create a new taxonomy of gestures. Specif-
ically, the new taxonomy has to:

• be descriptive of the type of gestures that people actually
perform;

• describe the morphological aspects of the gesture
(e.g. number of fingers);

• describe semantic aspects of the gesture (how it relates to
the action);

• capture differences in gesture complexity;

• summarize the state of the art (other taxonomies);

• be unambiguous and easy to classify even by non-experts;
and

• be succinct.

To achieve these goals we started by compiling a classifica-
tion schema based on previous gesture taxonomies, with an
eye on aspects that could have an impact on gesture mem-
orability. To make sure that the taxonomy was as descrip-
tive as possible of the gestures’ features, we manually clas-
sified a random sample consisting of 10% of the corpus and
used the distribution of the gestures’ features to reduce redun-
dancy and ambiguity in the final classification. For example,
we noticed from the videos that it was very difficult to dis-
criminate different speeds of movement (aspect proposed by
Laban [41]), and as a result, most gestures appeared to have
the same, normal (slow) speed. Therefore we decided to omit
this dimension from our schema in order to avoid confusing
the crowd workers. The final taxonomy, which is displayed in
Table 1, is also the result of further modifications after initial
piloting of the crowdsourcing process, which is described in
the next subsection. Notice that some dimensions are contin-
gent on the category selected in another dimension.

Crowdsourcing
We chose the CrowdFlower platform to classify this corpus
because of its large and varied worker base, its sound quality
control service, the availability of an infrastructure to train
workers using test questions and control their reliability, and
the ability to receive feedback from workers on the difficulty
and ambiguity of the tasks.

We programmed a web-based application that implemented a
gesture classification task based on our taxonomy. The design
of the Human Intelligence Task (HIT) interface is critical: if
the task unnecessarily hard or confusing it would directly af-
fect the quality of the collected data. Further, a poor HIT
design can disincentivize workers to participate [13]. There-
fore, we invested a significant amount of effort in designing
the interface (see Figure 1). For example, the application was
designed to minimize scrolling so that crowd workers could
play the gesture in a video any number of times while de-
ciding on each of the classification sub-tasks. Since there
are more classification sub-tasks than what can fit on a typ-
ical computer screen, these were scrolled horizontally on a
button-activated content slider that showed one dimension at
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Dimension Features Provenience Choice Type
1. Localization in air, on surface, mixed new single
2. Number of hands unimanual, bimanual symmetric, bimanual asym-

metric
W. et al. [44],
P. et al. [32]

single

3. Hand form (HF) spread, flat, mixed, other Jansen [14],
E. et al. [7]

single

3.1. Hand orientation (if 3 is spread,
flat or mixed)

horizontal, vertical, mixed Jansen [14] single

4. Additional hand forms single index finger, single other finger, multiple
fingers, fist, grab-release sequence, C-shape, L-
shape, other

E. et al. [7] multiple

5. Hand form and path same hand form, multiple hand forms, same hand
form and path, multiple hand forms and path,
mixed

W. et al. [44],
V. et al. [40]

single

6. Gesture path straight, flexible, n/a (no path) Laban [41] single
6.1. Gesture path flow (if 6 is straight
or flexible)

continuous, segmented Laban [41] single

6.2. Gesture path shape (if 6 is flexi-
ble)

open, closed, mixed new single

7. Relation to gesture action DR - di-
rectly related or NR - not related

alphabet letter or number DR, shape of an object
DR, arbitrary NR

W. et al. [44],
Q. [33], R. et
al. [35]

single

8. Relation to gesture workspace object dependent, workspace dependent, indepen-
dent

W. et al. [44],
R. et al. [35]

single

9. Gesture meaning metaphorical, symbolical, abstract W. et al. [44],
R. et al. [35]

single

Table 1. Proposed Gesture Taxonomy. ’same hand form’ in (5) corresponds to Wobbrock et al.’s static hand pose, but the original formulation proved
difficult to understand for crowd workers. ’multiple hand forms’ correspond therefore to dynamic hand poses.

a time. Because some of the dimensions involve movement
(e.g. additional hand forms, hand form and path in Table 1),
we included simple animations that exemplified certain ges-
ture features. The interface forced an answer for all classi-
fication subtasks, but tasks that were contingent on other re-
sponses only appeared when appropriate (e.g. the hand orien-
tation dimension is shown only if the hand form is spread, flat
or mixed).

Some categorizations require semantic judgments of the re-
lationship between the action and the gesture. For this the
interface provides, next to the video, the name of the target
action and snapshots of the state of the application before the
action is executed, and after the action is triggered. This is
analogous to how the videos were presented in the original
study when the gestures were created.

Test questions are the most important quality control mecha-
nism on the CrowdFlower platform and the best way to ensure
that high quality data is acquired. We randomly transformed
30 of the total number of recorded videos into test ques-
tions, using CrowdFlower’s interface for creating test ques-
tions. For each test question, we selected the acceptable an-
swers, which crowd workers would have to answer correctly
while working on the task. Special care was taken to ensure
an even distribution of test question answers, and also to skip
over gesture dimensions which would be too difficult or sub-
jective. CrowdFlower also offers a method called Quiz Mode
that ensures that only contributors who understand the task
are able to contribute to the task output. By default, and if

Quiz Mode is enabled in the settings, CrowdFlower requests
that workers complete four test questions before their trust
score can be evaluated and their judgements can be incor-
porated into the task output. For our task on CrowdFlower,
the trust threshold was set to 70%. Contributors that were
not able to pass the Quiz Mode were permanently disquali-
fied from working on the task. However, even workers that
passed the Quiz Mode were still continuously tested as they
worked in the task through the method called Work Mode,
which keeps the workers trust scores updated and ensures a
sustained quality of their answers.

The crowd workers classified five videos per block (for a
US$.80 payment), with at least three crowd workers classify-
ing each video. When multiple workers disagreed on the cate-
gorization, the chosen answer was the majority vote weighted
by the trust scores of the workers.

The task was first piloted on local students, and then piloted
again on a small set of crowd workers. This led to final ad-
justments of the interface and the taxonomy.

DATASET EXPLORATION TOOL
In the spirit of open data and replication in HCI [42], one of
the main goals of our work is to enable further analysis of
the annotated dataset that we are sharing. Although sharing
experimental data is beginning to become an accepted (and
encouraged) practice, we find that shared data often requires
too much initial work to even consider using it. To ameliorate
this problem and reduce the access threshold, we have cre-
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Figure 2. Data exploration tool. (a) presents the parallel coordinates visualization of different gesture dimensions and features; and (b) shows a table
containing information about the annotations of the gestures, allowing filtering interaction

ated a web application that provides access to all the videos,
represents the classification data, and allows interactive ex-
ploration of the dataset.

The tool, which can be accessed online at http:
//udigesturesdataset.cs.st-andrews.ac.uk/, has three
main connected components: a parallel coordinates panel, an
interactive spreadsheet, and a gesture page. The parallel co-
ordinates visualization [12] represents each gesture as a line
that crosses each of the 13 vertical axes at a different height
depending on the classification of the gesture (see Figure 2.a).
The first axis represents the memorability value (whether the
gesture was ultimately remembered or not) and each of the
remaining axes represents one of the 12 dimensions of our
taxonomy. This visualization is implemented with D31 and
Parcoords2. Gestures can be selected by filtering in one or
more dimensions, and dimensions can be reordered via pick-
and-drop. Filtering and picking is interactively connected to
the spreadsheet section, so that only filtered gestures will ap-
pear in the spreadsheet panel.

The spreadsheet (Figure 2.b) allows direct access to the data.
Each row represents a gesture and each column corresponds
to a dimension. Hovering over a row will highlight the corre-
sponding gesture in the parallel coordinates area above. The
spreadsheet widget is implemented using SlickGrid3. Click-
ing on a row opens a gesture page (Figure 3), in which the

1http://d3js.org/
2http://syntagmatic.github.io/parallel-coordinates/
3https://github.com/mleibman/SlickGrid/wiki/

video of the gesture can be played and all the information
about the gesture also appears (classifications, memorabil-
ity, intended action, and application). Finally, the application
contains a button that triggers the download of the raw data.

DESCRIPTIVE ANALYSIS
For all 396 recorded videos from the corpus we received a to-
tal of 1783 judgments, of which 1270 were considered trusted
and 513 untrusted (this count does not include judgments on
test questions). This results on an average of 9.63 crowd
workers classifying each gesture. Because all gestures were
judged by several workers, we also obtained a measure of
inter-rater reliability (IRR) for each of the different dimen-
sions (see the IRR scores in Table 2). These values represent
the average across all gestures of the percentage of workers
that agreed with the algorithmic classification described at the
end of the Crowdsourcing subsection above.

Our IRR is a measure of the trustworthiness of the overall
classification. Moreover, the independent IRR measures can
serve as a proxy measure of how ambiguous/difficult the dif-
ferent dimensions are to categorize. As expected, dimensions
that required semantic judgments (8 and 9 from Table 1) had
more modest agreement rates. Additionally, dimension 6.1
(whether a gesture’s path is open, closed, or contains the two
types) was also particularly difficult. Nevertheless, all IRR
values are above 70%.

In total,185 crowd workers completed the task and 60 of them
sent us feedback. Feedback from crowd workers indicated
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Figure 1. Gesture classification task implemented on CrowdFlower

Figure 3. Data exploration tool showing the gesture performed

that they considered the payment fair (4.2 out of 5), that
the instructions were clear (3.8 out of 5), that the test ques-
tions were fair (3.5 out of 5), and that the task was difficult
(2.8 score out of 5 for the ease of the task). The final aver-
age worker trust score (computed by CrowdFlower based on
their performance on test questions and work in the task) was
0.892.

Gesture Categorization Results
The gestures classified in each dimension for all features are
displayed in Table 2. The results indicate that some dimen-
sions are heavily biased towards a particular type of gesture
(e.g., most gestures use only the index finger, one hand, or
continuous path flows), whereas other dimensions are more
balanced (e.g., similar number of gestures are object and
workspace dependent, metaphorical and abstract).

Some of these results support previous findings [7, 44, 39]. It
is remarkable that even after more than five years since Wob-
brock et al’s [44] study, with multi-touch interfaces being now

pervasive, there is still such a strong bias towards single fin-
ger, single hand gestures.

STATISTICAL MODELING
The labeling procedure described above and the discrete na-
ture of the outcome variable of the gestures (memorable, not-
memorable, and close) make the dataset amenable to classi-
fication algorithms that might be able to provide additional
insight into the factors that affect memorability. The starting
point is the 43-dimensional feature vector for each gesture,
where each value is binary and represents each of the pos-
sible gesture classifications of the taxonomy (Table 1). The
dependent variable (memorability) has three possible values:
memorable, non-memorable, and close, which were heavily
imbalanced (312, 39, and 45 cases respectively).

Feature Selection
As some of the features could potentially introduce noise, we
decided to pre-select the most relevant subset of features for
describing the dataset. We tested combinations of the nine
gesture classification dimensions (Table 1), generating 510
possible subsets (the empty and the complete set were ex-
cluded). Each generated subset was evaluated based on a 10-
fold cross-validation accuracy obtained with Support Vector
Machines (SVMs) trained with the Radial Basis Function ker-
nel and parameters C and γ obtained via a grid search. The
best results were obtained with a selection of 28 features cor-
responding to dimensions 2, 4, 6, 6.1, 6.2, 7, 8 and 9 from the
classification schema described in Table 1. We generated the
feature vectors with the new selection of features and updated
the initial training set.

Modeling Approaches
We attempted to predict the memorability label of gestures
using different supervised machine learning techniques suit-
able for a 3-class problem and training using binary feature
vectors. We first experimented with Logistic Regression us-
ing the Weka4 open source software for data mining and
measured the 10-fold cross-validation results. We report the
weighted average scores between the three classes of gestures
obtained for different measurements in Table 3. Table 3 re-
veals that the results for predicting gesture memorability us-
ing logistic regression were not satisfactory as the learned
model was highly biased towards predicting only memorable
gestures, which represented over 70% of the training sam-
ples and for which the false positive rate was very high (over
70%).

Decision tree classifiers were another suitable technique for
our problem, having the additional benefit of being relatively
easy to visualize and interpret. We experimented with a range
of different types of decision trees available in Weka such
as Best-First Tree, ID3, J48 and also random trees and ran-
dom forests. The best results were obtained with the ID3 al-
gorithm, which achieved a modest F -score of 0.64. This is
only a small improvement with respect to the 10-fold cross-
validation scores obtained with logistic regression.

4http://www.cs.waikato.ac.nz/ml/weka/
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Finally, we tried Support Vector Machines (SVM) in their
libSVM implementation5. The best results were obtained
with a Radial Basis Function kernel and with C and γ param-
eters obtained via grid search (we also tried multiple kernel
functions such as linear, polynomial, string based and sig-
moid). Table 3 reveals that SVMs performed slightly better,
the F -score was 0.68, and overall accuracy was 70%.

DISCUSSION
We set out to achieve a better understanding of the data ob-
tained in [26] through an analysis and categorization of the
dataset. To achieve this, we chose to take advantage of crowd-
sourcing as a tool for the categorization of videos. We be-
lieve that this approach has many advantages and the potential
to significantly further HCI research on gestures if more re-
searchers analysed (and shared) the obtained gestures in this
manner.

The approach is more scalable than expert classification and
much faster—once the HIT was prepared it only took 13
hours for the full task to be completed. We were initially
concerned that crowd workers might not be able to achieve
acceptable consensus about certain dimensions. Specifically,
we were concerned about the dimensions that involved se-
mantic judgements. However, the results indicate that the
classifications are of a high quality (all IRR >70%). We sus-
pect that this is due to the careful setup of the HIT and the
simplified taxonomy. It is conceivable that groups of gesture
experts can perform categorizations with higher agreement,
but this kind of expertise is not easy to identify and recruit,
and we conjecture that the results would be largely the same
and orders of magnitude more expensive.

We have included our templates in this paper’s complemen-
tary materials so that other researchers can take advantage of
our work and annotate and share their gestures at a lower cost
and effort.

Taxonomy
The taxonomy is a critical element of both the research and
methodological parts of this work. We designed it to bal-
ance generalizability and detail from previous work with the
simplicity and conciseness required for a viable human in-
telligence task. The measures of agreement from the crowd
worker judgements show that the taxonomy enables consis-
tent categorizations, although some of the dimensions imply
harder distinctions. Specifically, the two dimensions that im-
ply semantic judgements (8, 9) or gesture path shape (6.2)
were between 70% and 80% agreement.

Although we created this taxonomy to learn more about mem-
orability and gestures, we believe it captures most of the mor-
phological and semantic characteristics of arm and hand ges-
tures. Therefore we believe that this taxonomy can be use-
ful to researchers in this area as an alternative that is: a)
very expressive, b) concise, and c) validated for classification
through crowdsourcing. For explicit purposes beyond what
the current version can describe and classify, the taxonomy
can be extended with new dimensions.
5http://www.csie.ntu.edu.tw/ cjlin/libsvm/

Types of gestures
The distributions of gestures that we obtained offer an inter-
esting view of current user expectations regarding gestures
on and above surfaces. First, the preference for single hand,
single finger gestures suggests that the conceptualization of
“finger as cursor” is still strong and common actions would
probably benefit from this kind of gesture. Second, in pres-
ence of a display surface, people still prefer to design ges-
tures that come in contact with the surface, even when they
were explicitly told that this was not a constraint (see [26]).
Third, although in-air dynamic gestures can be extremely rich
in form, which might be perceived as useful for memorabil-
ity, the chosen gestures were heavily biased towards simple
hand postures that tended to be unchanging (gesture changes
are uncommon) and with the hands describing simple paths
(i.e. non-segmented and open).

We believe this rich gesture data can support gesture interface
designers. For instance, using our exploration tool a designer
can get an idea of how naturally users propose certain ges-
tures, or get inspired when creating advanced gestures by ex-
ploring the less common gestures created by the participants.

Modeling and its Challenges
The annotation of the data made possible to explore the data
using statistical modeling techniques. Our intention was to
identify models that would be able to predict memorability
based on the characteristics of a gesture. This approach was
only partially successful in that, although there is some in-
formation in the annotation that allows the best algorithm
(SVMs) to classify with performance above chance, the pre-
dictions are not sufficiently accurate. Their performance is
relatively close to assuming that all gestures will be memo-
rable.

There are several factors that explain why the prediction abil-
ity of the models is low. First, although our dataset is substan-
tial in size for this kind of study, it is not large compared to
the typical dataset sizes required for accurate statistical mod-
eling. Second, the data is heavily biased towards memorable
gestures, which makes modeling difficult. Third, memorabil-
ity is inherently difficult to predict, with many possible inter-
vening sources of noise, including individual differences and
personal experience.

Nevertheless, a detailed look at the more interpretable models
(specifically, decision trees), and the results of the feature se-
lection stage (discussed in the Modeling Section) suggest that
some dimensions contain more information than others to-
wards explaining memorability. Specifically, we suspect that
three gesture dimensions deserve particular attention: gesture
meaning, gesture path, and gesture flow.

Summary of insights
The following points summarize the main insights obtained
from the annotation process and analyses presented in this
paper:

• Crowdsourcing is a fast and reliable tool for gesture cate-
gorization.
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Dimension Features # %

1. Localization
(IRR 89%)

on surface 353 89
in air 22 6
mixed 21 5

2. Number of hands
(IRR 98%)

unimanual 285 72
bimanual symmetric 56 14
bimanual asymmetric 55 14

3. Hand form
(IRR 89%)

flat 98 25
spread 25 6
mixed 6 2
other 267 67

3.1 Hand orientation
(IRR 85%)

horizontal 76 19
vertical 30 8
mixed 23 6

4. Additional hand
forms
(IRR 89%)

single index finger 205 52
single other finger 3 1
multiple finger 48 12
grab-release 12 3
c-shape 8 2
l-shape 19 5
fist 5 1
other 100 25

5. Hand form and
path (IRR 82%)

same HF 41 10
multiple HF 26 7
same HF and path 289 73
multiple HF and path 12 3
mixed 28 7

6. Gesture path
(IRR 87%)

straight 204 52
flexible 107 27
n/a 85 21

6.1 Gesture path flow
(IRR 88%)

continuous 228 56
segmented 83 21

6.2 Gesture path
shape
(IRR 74%)

open 74 19
closed 17 4
mixed 16 4

7. Relation to
gesture action
(IRR 81%)

alph. letter or nr DR 51 13
shape DR 64 16
arbitrary NR 281 71

8. Relation to
gesture workspace
(IRR 78%)

object depend. 173 44
workspace depend. 219 55
independ. 4 1

9. Gesture meaning
(IRR 72%)

metaphorical 171 43
symbolical 15 4
abstract 210 53

Table 2. Distributions of the gesture annotations obtained from Crowd-
Flower

Method TP FP Prec Rec F1 ROC Acc
%

Logistic
Regression

0.65 0.61 0.62 0.65 0.63 0.54 65

ID3 0.67 0.6 0.61 0.67 0.64 0.56 68

SVMs 0.70 0.58 0.67 0.70 0.68 0.59 70

Table 3. Performance measures obtained using the best classifiers. From
left to right: true positives, false positives, precision, recall, F -score, re-
ceiver operating characteristic and accuarcy.

• Crowdsourcing categorization results are reasonably reli-
able.

• Users still predominantly define single-point and single-
hand gestures.

• Users tend to create gestures where the hand form does not
change.

• Gesture meaning, path and flow are promising characteris-
tics in the further study of memorability of gestures.

Limitations and Future Work
The work that we present is based on data obtained through
a memorability study. Participants created gestures with the
specific goal of remembering them afterwards. Although we
tried to create a process and taxonomy that generalizes to
other desirable features beyond memorability, such as discov-
erability and performance, some of the findings are inevitably
biased by the memorability focus of the experiment that gen-
erated the original data. Future annotations of user-defined
gestures, including those from elicitation studies, can help
build up a consistent knowledge base on the types of gestures
that people naturally propose.

Although we provide materials in the additional files that
should simplify categorization of other gesture datasets
through crowdsourcing, the setup require additional work.
Videos and existing data still need to be linked to the new
HIT and the interface tested, even if no modifications to the
classification task are required. In the future it would be use-
ful to develop a platform that simplifies the classification and
storage of gesture collections of several types.

CONCLUSION
Gesture research can benefit from more researchers sharing
and annotating their datasets. In this work we show an ex-
ample of how an existing video gesture dataset can be anno-
tated using crowdsourcing tools and then made available for
exploration through a visualization tool. In addition to the
methodological contributions, which include a revised inte-
grative taxonomy of arm and hand gestures, we show how
further analysis of the annotated data can lead to a better
understanding of gestures that go beyond the analysis of-
fered in the original paper. Our dataset can be accessed here:
http://udigesturesdataset.cs.st-andrews.ac.uk/.
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