AwToolkit: Attention-Aware User Interface Widgets

Juan E. Garrido, Victor M. R. Penichet,
Maria D. Lozano
Computer Science Research Institute
University of Castilla-La Mancha
Albacete, Spain

ABSTRACT

Increasing screen real-estate allows for the development of
applications where a single user can manage a large amount
of data and related tasks through a distributed user inter-
face. However, such users can easily become overloaded
and become unaware of display changes as they alternate
their attention towards different displays. We propose Aw-
Toolkit, a novel widget set for developers that supports users
in maintaing awareness in multi-display systems. The Aw-
Toolkit widgets automatically determine which display a
user is looking at and provide users with notifications with
different levels of subtlety to make the user aware of any
unattended display changes. The toolkit uses four notifica-
tion levels (unnoticeable, subtle, intrusive and disruptive),
ranging from an almost imperceptible visual change to a
clear and visually saliant change. We describe AwToolkit’s
six widgets, which have been designed for C# developers,
and the design of a user study with an application oriented
towards healthcare environments. The evaluation results re-
veal a marked increase in user awareness in comparison to
the same application implemented without AwToolkit.

Categories and Subject Descriptors
H.5.2. [Information interfaces and presentation]: User
Interfaces— Windowing systems

General Terms
Design, Human Factors.

Keywords
Attention, awareness, notifications, distributed user inter-
faces.

1. INTRODUCTION

Complex environments often require systems and applica-
tions that involve controlling large amounts of data. Such
applications can involve interfaces that are spread across
multiple displays that a user must deal with. As a result,

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from Permissions @acm.org.

AVI’1/, May 27-29, 2014, Como, Italy

Copyright 2014 ACM 978-1-4503-2775-6/14/05$15.00.
http://dx.doi.org/10.1145/2598153.2598160

Aaron Quigley, Per Ola Kristensson
School of Computer Science
University of St Andrews
United Kingdom

the number of tasks and events a user needs to manage or
supervise can become overwhelming or require a user to di-
vide their attention (e.g. [1, 2, 3, 4, 5, 6, 7, 8]).

Healthcare centers [4] represent an example of such a com-
plex environment. Generally, operators have to ensure that
all the tasks are performed on time, and they have to as-
sign new tasks and manage emergencies. To this end, an
operator typically controls a system deployed on multiple
displays that are continuously revealing changing informa-
tion. However, new display content might be missed by
the operator because it can suddenly appear within a large
amount of data, while the operator is not looking at the
screen. The importance of unnoticed changes depends on
the nature of the task but on the whole, the loss of infor-
mation can be considered a disadvantage. For example, in
healthcare environments, lost information may result in the
incorrect treatment of patients, which may then affect their
health.

In this paper we present AwToolkit, as an approach to the
delivery of updates and notifications from unattended dis-
plays. AwToolkit consists of a set of user interface wid-
gets (AwWidgets) that assist users in maintaining aware-
ness of display changes using different levels of interruptions
of their current task. These AwWidgets are a class of gaze-
aware user interface components inspired by the recent work
on subtle gaze-dependent techniques for visualising display
changes in multi-display environments [3]. The main objec-
tive of AwWidgets is to offer developers the capability of
programmatically detecting changes in parts of the applica-
tion, when users are not looking at a specific display, and
then notifying users of these changes using a notification sys-
tem that supports different degrees of subtlety. We present
six user interface widgets (AwPanel, AwButton, AwLabel,
AwTextBox, AwComboBox and AwPlayer) as examples of
specific implementations of the AwWidget toolkit concept.

2. RELATED WORK

Gaze-aware user interface components are a largely an un-
explored research area. Existing work focuses on providing
users with appropriate information on events to help them
with their tasks. We describe some of the most relevant
studies, which are relevant to the work and concepts pre-
sented here.

The MAUI toolkit [6] is a pioneering project that provides
a set of widgets oriented towards group work, based on ex-

isting standard user interface widgets. This toolkit can col-
lect, distribute and visualize group awareness information in
widgets. In addition, MAUI provides a variety of both stan-
dard and groupware interface components in Java. The use
of the toolkit results in improvements in collaborative envi-
ronments [6]. However, the toolkit does not focus greatly on
building collaborative group-aware interfaces. Specifically,
MAUTI offers users some types of awareness but the main
one only reveal people’s activities as they work with the ap-
plication as is not related to their gaze.

Mnemonic rendering [2] involves buffering changes in pixels
and restoring them to the screen. It is primarily based on
the principle of visible pixels, which may sometimes be hid-
den. Consequently, Mnemonic rendering ensures the storage
of changes in hidden pixels to avoid losing visual information
at a window level. These pixels will then be restored by the
history buffer, thereby revealing the changes that happened
while they were not visible to the user. Based on user’s
gaze, TeleEye [8] provides information regarding a sense of
presence and workspace awareness [5]. The objective is to
reveal the location of the user’s attention using eye tracking
in a collaborative setting. One of the main advantages pro-
vided in TeleEye applications is the possibility of improving
coordination and communication of actions between users.

DiffDisplays [3] is a system that is able to track the dis-
play the user is looking at by using a series of web cameras
in a multi-display environment. It helps users to quickly
gauge what has changed since they last looked at a display.
DiffDisplays uses four different high-level visualization tech-
niques to highlight changes. These techniques are executed
when you look at a display, after a period of initially not
looking at it. Using the entire screen or windows, the visu-
alizations aim to provide the user with an overview (or an
awareness) of changes that happened while their attention
was focused elsewhere.

The toolkit we propose in this paper is based on the pub-
lished Diff Displays codebase [3]. The main difference with
respect to related work is that AwToolkit is a toolkit for
developers based on tracking the user’s gaze to produce no-
tifications with different levels of subtlety in order to in-
form users about changes at the widget level. In contrast,
MAUTI provides a toolkit for group work but it does not
take into account the user’s gaze when generating informa-
tion or the changes in the interface. The primary difference
to mnemonic rendering is that it does not work at the wid-
get level but at the window level. Finally, while employing
the user’s gaze when generating information, Teleye ignores
changes in the interface which might be useful to inform the
user of.

3. AWTOOLKIT

Gaze-aware user interface components (widgets) and subtle
change within these widgets is a largely unexplored area.
We categorize widgets to help developers generate change
notifications when users return their gaze to a display that
has changed. In this way, the widgets can be classified into
three categories that take into account a minimum level of
disruption. The first category involves widgets that act on
the entire screen. The DiffDisplays [3] system, described
previously, represents an example of this.

The second category refers to widgets which provide infor-
mation about changes but focus on a specific part of the
screen. AwWidgets is an example of this. It consists of a
set of user interface widgets which we will present in de-
tail later in this paper. Finally, the third category refers to
mirroring techniques that notify the user of changes on the
screen the user is looking at, which correspond to updates
that have appeared on an unattended display.

AwToolkit is a toolkit implemented in the C# programming
language that aims to provide developers with gaze-sensitive
user interface controls. AwToolkit adds six new user inter-
face controls to the programming environment based on the
functionality of some of the already existing controls: panel,
button, label, textbox, comboBoxr and media player. This new
functionality consists of the capability to detect whether the
user is looking at the screen where the widget is located, and
the ability to react to such an event in an appropriate fash-
ion.

The design of each user interface widget is based, in general
terms, on the approach a typical Visual Studio C# devel-
oper might use the controls. Each widget is customisable in
appearance and behavior. The appearance can be modified
through the associated properties, while the behavior can
be controlled and managed via the events related to each
widget.

A key objective in designing AwWidgets has been to pre-
serve the look and feel of Visual Studio. To this end, the
toolkit is encapsulated into a library which after it has been
imported will add the widgets as new tools in the Visual
Studio toolbox.

3.1 General Features

The key feature of AwToolkit is the capability of the wid-
gets to detect the user’s gaze and consequently show changes
when the user’s gaze returns to a previously unattended wid-
get screen. The detection procedure is based on the Diff
Displays system [3]. Each widget is connected to a server
provided by the Diff Displays [3] system that is continually
sending information that indicates whether the user is look-
ing at a specific display or not. The information supplied by
the server is configured so as to know, second by second, if
the user is looking at a particular screen. Currently, in the
case of having more than one screen, the server must be run
for each one. When configured, the server constantly sends
information related to the user’s gaze so that it can be read
by the application that requires it.

Each widget can generate two gaze-aware states: advice and
normal. The first state refers to a state in which the user is
not looking at the screen that contains the widget and one or
several display changes have taken place on the screen. If the
widget is not in the advice state it will be in the normal state,
indicating that the user is looking at the screen containing
the widget and/or there are no display changes.

The way display changes are shown to the user will depend
on the environment created by the developer for each appli-
cation. Each environment will offer certain conditions and
requirements which involve an adjustment of the level of sub-
tlety of the information the user receives regarding changes.

Figure 1: AwWidgets layout and structure.

Consequently, a set of modes has been defined to specify the
level of subtlety of information on a change:

e Disruptive: the user is alerted and the current activity
is disrupted.

e Intrusive: the user is alerted and we can expect their

gaze to be directed to the location of the display change.

However, the user can freely continue their current ac-
tivity.

e Subtle: the user is alerted more lightly and their at-
tention is attracted to the display change. However,
their gaze is only directed to the location of the dis-
play change.

e Unnoticeable: the user is alerted so subtly that if they
are not paying attention they may not notice the dis-
play change signal.

In order to customize the level of subtlety, the developer
is provided with a set of elements which modify the visual
appearance and which can be maintained, individually or
jointly, for a determined period of time. Each widget con-
tains specific visual elements which indicate changes in the
widget itself. These elements are displayed when one or
more changes have taken place and the user is not looking
at the screen. When the user looks at the widget screen,
the visual change elements disappear after a certain time.
The time they take to disappear is defined by the property
specified for this purpose. In general terms, the way the de-
veloper defines what visual marks appear and for how long,
will determine the level of subtlety of the information the
user receives regarding the changes.

The customization of the level of subtlety is a result of the
properties created for the purpose of each widget and which
facilitate the desired level of subtlety: properties configuring
which display change notifications that will be used with an
AwWidget (if they are not part of the normal appearance as
is the case in AwComboBox), properties to indicate the ap-
pearance of the graphic elements of the change notification,

Figure 2: Structure of AwWidgets.

and AwTime (to indicate the length of time change notifi-
cation elements are to be displayed). However, in general
terms the authors have established a property (AwDefault-
Technique) which automates level selection. This property
makes a default selection of visual change elements and du-
rations for each widget in accordance with each level of sub-
tlety. The defaults are based on the authors’ experience and
the comments and opinions of the users participating in our
evaluation, described later in this paper.

The final feature of AwToolkit is the localization of changes
in the content and functionality of the widgets. Three meth-
ods have been used for detecting changes, based on the
type of widget. The first method is based on successive
screenshots of the widget and, by definition, its visual con-
tent, which represents the evolution over time. The second
method uses the widget text, which is a default visual ele-
ment and is represented by a property. The third method
is based on the modification of any specific state-changing
functionality of the widget, such as for example a button
changing its disabled state to an enabled state when the
user is not looking.

3.2 Implementation Details

In terms of C#, each AwToolkit widget shares a specific
structure (see Figure 1 for one example aspect). Figure 2
shows the overall structure for a widget. Due to the shared
structure, reusing some parts for the development of a new
widget is an easy task, which helps such a development;
therefore, extending AwToolkit with new components does
not involve many new lines of code.

First, the widget structure imports libraries: (1) to use
threads in the implementation of the parallelization of gaze

Figure 3: Example properties of an AwWidget to
define the method of notifying display changes.

checking, running the common functions of the control and
modifying the interface look based on the user’s gaze; (2)
to use sockets to connect with the Diff Displays [3] server
which provides information about whether the user is look-
ing at the screen or is not; (3) to be able to modify the visual
control look; and (4) to be able to close external processes,
closing the Diff Displays [3] server once the application has
exited and no more resources are required.

Next, we have the code regarding the class that constitutes
each AwWidget. Such a class extends another one called
UserControl, which provides the basic functionality of a new
control. In this way, the control may be used as another
graphical item in the toolbar in Visual Studio. The AwWid-
get properties (Figure 3) allow the user: to select the behav-
ior of the widget based on the user’s gaze; to define what
technique to use to show the user every change in the system
which took place when and where they were not looking at
the widget; and to define the visual look of the widget. The
visual look will be different if (a) the user was looking and
there were no changes; or if (b) the user was not looking
and there were changes. In the second case, the user will
be warned about the changes by means of notifications with
different levels of subtlety defined by the developer.

After variables, constructor and properties, the structure of
the class provides events related to the widget, which are de-
fined as functions that are called when an event occurs. It is
important to highlight the OnPaint event. It is called when
then widget is drawn on the screen, such as during each
screen refresh of the application. Since such event runs con-
tinually and involves re-drawing the widget, it is a suitable
place to check the user’s gaze as well as to look for changes
to modify the “gaze-aware” look of the widget. To do so,
the value of a variable with information of the user’s gaze is
checked. Such information is continually updated through
a process running in parallel to the interaction of the user
with the widget. Every AwWidget also offers a property
called EzistingChanges which can be modified directly by
the developer. Taking into account all this information, the
widget properties are analyzed in the OnPaint method. If
the user is not looking at the screen and any change in the
control takes place (e.g. by disabling or changing functional-
ity), visual components are added according to the selected
technique. We will discuss this further in Section 3.3.

Items affected by users’ gaze are found based on the informa-
tion that the Diff Displays [3] server is continually transmit-
ting. The server is configured to provide information every
second, which is the same period that is used to check an
AwWidget. The variable gaze provides information about

/#1t obtains the last package of diffDisplays

answer = GiveMeLastDiffDisplaysMessage(};

f/We analyze the answer

if (answer.Contains{"%\"gaze\": 1") || answer.Contains
{"\"gaze\": 2"} || answer.Contains{"\"gaze\":3 "))

f/Searching the "gaze" word
for (int i = B; i = answer.lLength; i++)

if (respuestalil == 'g' && respuestali + 1]
== 'a' && respuestali + 2] == 'z' &&
respuestali + 3] == '&']

value_gaze = answer[i + 7].ToStringl);
if (int.Parsel(value_gaze) == 1]

£fThe user does not look at the screen
lookAt = false;

}

if (lint.Parse{value_gaze) == 2}
|| {int.Parselvalue_gaze) == 3)}{
/fThe user looks at the screen
lookAt = true;

break;

Figure 4: Code to update the variable that indicates
if the user looks at the screen.

whether the user is looking at a widget or not. According to
its value, the variable value_gaze in AwWidget is updated,
which in turn will influence the behavior and graphical look
of the widget (see example code in Figure 4). All this ac-
tivity connected to the gaze checking is implemented on a
thread running in parallel to the functionality of the widget
itself.

Finally, the last section of the structure of AwWidget con-
cerns closing of threads and the disconnection of the Diff
Displays [3] server to avoid unnecessary resource utilization.

The structure of AwWidgets makes it easy for developers
to include them in their applications. Since the toolkit in-
tegrates with Visual Studio, once the toolkit has been im-
ported, the only thing a developer needs to do is to drag the
widgets from the toolbar and to drop them onto the visual
interface on their application. The developer can change the
properties of the widget and the events like any other stan-
dard control in Visual Studio. No extra code is required to
make use of AwWidget when developing applications.

3.3 Widgets

AwToolkit currently offers developers six AwWidgets based
on the features previously described: AwPanel, AwButton,
AwLabel, AwTextBox, AwComboBox and AwPlayer. They
are all based on a C# standard control but with new added
characteristics. The modifications incorporate the capability
of automatically detecting changes in control (content or
functionality) or based on the user’s gaze. If the user is
not looking at the widget screen, changes are searched for,
and if found, notifications are automatically presented to
the user. The following sections describe the components of
the toolkit according to the sharing mode used to notify the
user of a change.

3.3.1 AwPanel

The first widget, AwPanel, can be considered an extension
of an existing standard control: the panel. The main pur-

Location Manager

ion Manager

Reception

Irfirmary

[

[

7] '

ian

Corner marks

y

Dining Room

Hert!

2

Dining Room

Additional
marks

Margin

2 f Content

Figure 5: Example an AwPanel working in the Ubi4health system [4].

pose of this standard control is to help developers organize
the content in an application. To this end, a panel of an
application generates a specific area in which some elements
are included. The panel appears as a polygon inside the ap-
plication, the perimeter of which is marked by a continuous
line.

The AwPanel widget detects changes by comparing screen-
shots over time. The widget captures a new screenshot reg-
ularly and the new screenshot is compared against the pre-
vious one. The comparison is performed on the pixel level.

The widget is composed of two main parts (see Figure 1a):
content and margin. The first part is where the developer
has to insert the section of the application, in which the
user may wish to be aware of changes. The appearance of
the margin area changes according to the widget behavior.

The developer has to make modifications on the margin of
the panel to notify changes. A predetermined color in the
margin represents the normal widget state of the widget.
Then, if the user is not looking at the widget and changes
are detected in the content area, the margin will be mod-
ified, changing from the normal state to the advice state
(ColorAware property). Figure 5 shows an example of how
AwPanel changes from one state to another. For this pur-
pose, AwPanel offers three change notification techniques.
The first two techniques are independent of the number of
changes.

The first technique consists of modifying the widget mar-
gin by three individual or combined visual changes: chang-
ing the color of the complete margin, inserting vertical and
horizontal lines and inserting marks in the corners of the
margin. Properties determine the notification actions in
the margin: NormalMarginColor (margin color in normal
state), AwareMarginColor (margin color in advice state),
AwareMarksMargin (marks added to the margin to notify
changes). Obviously, if the visual elements are combined,
each added element must be a different color so as to ensure
a minimum differentiation. However, depending on the level
of subtlety required, the difference between the color of the
marks and the margin color can range from almost invisible
to highly disruptive.

The second technique is an extension of the previous one.
Here the panel is conceived as an area of the screen formed
by four equally-sized squares. Each area displays a quadrant
in a corner of the panel with different visual information. In
this way, depending on which quadrant changes are pro-
duced in, a mark will appear in the relevant corner. This
technique does not not only indicate that a change has taken
place, it also gives some indication of where the change took
place.

The third technique is called “Book mode” and it is depen-
dent on a number of changes. If there is just one change
the behavior is the same as the previous two techniques.
Otherwise, the widget generates a book with the screenshot
of each change. Therefore, when the user goes back to the
screen, the widget shows the book as an overlay element of
the panel. The book is a series of screenshots of the con-
tent and the user is able to navigate through them. The
developer can rapidly generate a cursor control for the book
thanks to the methods offered by the widget. Figure 6 shows
an example of the Book mode.

3.3.2 AwButton, AwLabel and AwTextBox

This section describes three widgets that despite having dif-
ferent functionalities share the same approach to alerting
the user of a change produced while they are not looking
at the screen. The method in question is, in fact, the one
described as the first technique in AwPanel (section 3.3.1),
which modifies the margin color and which is also able to
insert horizontal and vertical lines and marks in the cor-
ners. For this purpose, it is necessary to maintain the same
structure as AwPanel in the distribution of the graphic ele-
ments into which AwButton, AwLabel and AwTextBox are
divided. This structure is shown in Figure la.

AwButton is a refinement of the standard button control.
The detection of changes is based on identifying the acti-
vation or deactivation of the functionality associated with
pressing AwButton.

AwLabel extends the label control, which is a text descrip-
tion in a user interface. Since the main element of AwLabel
is the text it displays to the user, the detection of changes

Figure 6:
Mode.

Visual description of AwPanel Book

is based on checking if the text has changed while the user
is not looking at the widget screen.

Finally, AwTextBox defines a new version of the TextBozx
control, which is a widget with editable text. Similarly to
AwLabel, the detection of changes focuses on identifying
modifications in the text displayed by AwTextBox.

3.3.3 AwComboBox

AwComboBox is based on the standard ComboBox control,
which shows a drop-down list of selectable items to the user.
Taking into account the features of ComboBox, the detection
of changes is based on: (1) the search for the elimination or
insertion of elements in the drop-down list and (2) a change
of the elements selected from the list.

The design of AwComboBox is different from that of the
previous widgets. It has a drop-down design when the drop-
down arrow is selected (see Figure 1b). It consists of the
drop-down menu (standard ComboBox control) and four
rectangles which border the widget. The aim of the four
rectangles is to allow the developer to indicate changes based
on their location. The initial idea of the use of rectangles
is the following: (1) the upper and side rectangles indicate
changes in the element selected from the drop-down menu
(see Figure 7); (2) the lower rectangle displays changes in the
list itself among elements which are not visible unless the list
is dropped down; and (3) the four rectangles together offer
changes in the non-visible list and in the selected element.

The widget completes its advice mode for changes produced
when the user is not looking by the modification of the visual
appearance of the rectangles. To this end, AwComboBox
uses two individual or combined techniques: (1) changing
the background color; and/or (2) adding horizontal lines in-

Figure 7: The way an AwComboBox shows changes.

Figure 8: Behavior of AwPlayer.

side the side rectangles and/or vertical lines in the upper
and lower rectangles.

3.3.4 AwPlayer

The last AwWidget is AwPlayer. If AwPlayer detects that
the user has stopped looking at the screen, it stops playing
back multimedia content. If it detects the user is looking
at the screen again, it resumes playing. Figure 8 shows
how reproduction progresses depending on the user’s gaze.
AwPlayer is designed for situations in which a user has the
need to pay attention to all multimedia content.

A developer configures AwPlayer via the PlayerSource prop-
erty. This property is the multimedia player on which Aw-
Player acts. The developer inserts a multimedia player which
will be the reproduction source on which AwPlayer will act
depending on the user’s gaze.

AwPlayer does not contain graphic elements since it already
uses a multimedia player.

4. EVALUATION

AwToolkit has been evaluated from two perspectives. The
first evaluation was with an application using AwWidgets
used by end-users. The second evaluation elicited informa-
tion from developers in order to better understand their ful-
filled and unfulfilled needs and wants when developing with
AwToolkit.

4.1 User’s Point of View

The aim of this evaluation was to test how the developed
widgets allowed users to be aware of screen changes in a
specific environment. The evaluation was performed with 12
participants who worked with two versions of Ubidhealth [4],
a healthcare application with a three-screen configuration,
which manages essential tasks in residential care homes. The
first version incorporated AwPanel (in book mode), AwBut-
ton, AwLabel, AwTextBox and AwComboBox, while the

120%
100% T
80% +— — —

60% |

Accuracy (%)

40%

=l -h" “ lﬁ --L-
0% + T T T d
1 2 3 4

Task

Figure 9: Average accuracy obtained during the
evaluation with Ubi4health with AwWidgets (blue)
and without (red).

second did not. The experiment was performed with three
computers with screens, specifically two dual-core computers
with 20-inch displays and one i-7 MacBook Pro connected
to a 22.5 inch screen. Using a standard screen configuration,
each computer executed one part of Ubidhealth. The part
that manages the tasks to be performed was on the left, the
part that controls alerts was in the center, and the part that
manages the staff was on the right. This is a typical use case
and display configuration for this task.

Five participants were female and the other seven were male.
Participants had an average age of 36; the oldest participant
was 48 and the youngest was 21. All of them were familiar
with computing systems.

The evaluation was based on the performance of four tasks
that each user had to complete using the two versions of
Ubidhealth described. The tasks asked the participants to
follow specific instructions and activities through two of the
screens without viewing the third one. The users were in-
vited to consider themselves as being responsible for the
completion of pending tasks, staff organization and the im-
mediate attention of emergencies in a real residential care
home. Each user was introduced to the application through
an initial tutorial in order to ensure they could understand
the information given by Ubi4health and understand how to
find possible changes in the tasks. The evaluation used four
tasks:

e Task 1: the user has started their working shift and
wants to take 15 seconds (ignoring screen 3) to check
if all the tasks are progressing correctly (screen 1). At
the same time, the user is constantly attending to pos-
sible resident alerts (screen 2). The user then decides
to look at screen 3 to check where the staff are and re-
organize them, as there are some tasks that have not
been performed on time. Finally, the user has to indi-
cate on screen 3 if there were changes, and if so, how
many.

e Task 2: the user continues (for 15 seconds) working
with screen 3 to organize the staff without looking at
screen 2. Then, the user remembers that an emergency
may appear and they look at screen 2. In that moment,
the user has to indicate if there were changes on screen
2, and if so, how many.

e Task 3: the user looks again at screen 3 for 25 seconds
to finish the staff reorganization but without forgetting
screen 2 in order to control emergencies. Afterwards,
the user should check the tasks not performed in time
again, in case these have changed. Therefore, the user
looks at screen 1 and has to indicate again if there
were changes, and if so, how many.

e Task 4: the user analyzes the tasks (performed and
not performed in time) to decide who are the most
appropriate staff to complete the pending ones. After
15 seconds, the user looks at screen 3 to send messages
to the correct employees. At this moment, the user has
to indicate on screen 3 if there were changes, and if so,
how many.

The evaluation was carried out as a within-subjects design
with toolkit as the independent variable (using or not using
AwWidgets) and accuracy as the dependent variable. The
outcomes of the evaluation are shown in Figure 9, and indi-
cate a clear improvement when using AwWidgets. AwWid-
gets resulted in significantly higher accuracy for Tasks 1,
3 and 4 (p < 0.0001; RM-ANOVA, Bonferroni corrected).
These improvements are based on the accuracy of the par-
ticipants’ answers and the correctness of the participants’ in-
dications regarding the number of changes they have found.
When using Ubidhealth without AwWidgets the participants
had a very low accuracy. There is only one task in which
the answers about changes were correct, the one related to
emergencies in which Ubidhealth offers a clear visual change
on the screen. The answers related to the other tasks had
an accuracy between 11% and 23%, which is very low. How-
ever, accuracy increased using AwWidgets. Specifically, the
partcipants gave answers with a high accuracy, between 83%
and 100%. The unique case in which the accuracy is the
same corresponds with Task 2 since Ubi4health notifies the
emergency (the change) through striking and intrusive ad-
vice. Beyond this, the differences between the two versions
of the application show a clear conclusion: participants had
difficulty achieving the task when they had to control several
aspects on different screens and manage many duties. These
conditions made it difficult for the participants to compare
the current state of a screen with a previous one. Accord-
ingly, participants required ways to know what has changed
in unattended displays. This information is provided by
AwWidgets. AwWidgets allow users to be aware of what
has happened on a display when they are not looking at
it. Further, the user has to be able to continue with their
current tasks once they have been informed of the change.

Some problems arose with people wearing glasses and using
the version of Ubidhealth with AwPanel. However, partic-
ipants were able to answer the questions because AwPanel
was in Book mode which implies that the widget stored the
changes when the user was not looking at the corresponding
screen. When the user looked at the screen again, AwPanel
showed the changes in short periods of time due to eye detec-
tion problems. During these periods the participants were
able to identify the changes but it took them longer since
the book of changes appeared and disappeared from time to
time.

120%

100%

80%

Accuracy (%)

40%

-
N H | | i
0% '
1 2 3 4
Task

Figure 10: Average accuracy from the developers.

4.2 Developer’s Point of View

In this evaluation we wanted to better understand devel-
opers fulfilled and unfulfilled wants and needs when using
AwToolkit. We recruited 12 developers with a good knowl-
edge of C# and expertise in using Visual Studio.

Every developer created an application that made use of
AwWidgets, among other more standard user interface wid-
gets. The developers had previously been introduced to Aw-
Toolkit via a simple tutorial that demonstrate its function-
ality and events. The tasks in the evaluation were:

Task 1: import the library with AwToolkit to be able
to see and use its items in the toolbar.

e Task 2: insert an AwButton and an AwPanel into the
application and define how these widgets will behave
when the user is not looking at the screen.

e Task 3: insert a 10-seconds timer to be run when Aw-
Button is pressed.

e Task 4: disable the button after the 10-second timeout
and introduce any change in the AwPanel.

The findings of the evaluations show that the use of Aw-
Toolkit is an easy-to-adapt process. Developers stated their
satisfaction highlighting how similar it is to use compared
to using the standard user interface controls. The develop-
ers’ average accuracy was 100% on tasks 1 and 2, 83% on
task 3 and 92% on task 4 (see Figure 10). This preliminary
evaluation suggests AwToolkit can be straightforward to in-
corporate into the development process for a C# developer.

5. CONCLUSIONS

This paper has presented AwToolkit, a novel toolkit for de-
velopers that supports notifying users of changes that ap-
pear in the user interface when users are not looking at the
display. The main objective is to allow users to manage com-
plex systems in which the number of tasks to perform and
the management of a large amount of data can overwhelm
users. To solve this problem, AwToolkit offers the following
attention-aware user interface widgets: AwPanel, AwBut-
ton, Aw Label, AwTextBox and AwComboBox. These wid-
gets are based on standard user interface controls that con-
tain customizable margins whose appearance changes based

on the user’s gaze and any changes detected. Gaze detection
is performed using Diff Displays [3], a system that automat-
ically identifies the user’s gaze using computer vision tech-
niques in conjunction with web cameras. AwToolkit extends
this work by providing awareness of changes at the widget
level. The widgets generate notifications with different lev-
els of subtlety. Specifically, the levels mean that users are
notified without being interrupted and having to stop their
current task. In addition, one of the widgets allows users
to be aware of changes in the user interface thanks to a
book mode which enables user access to screenshots of each
change that appears on a screen while the user is not looking
at it. We performed an initial evaluation of AwToolkit with
twelve end-users. The participants used Ubidhealth [4], a
healthcare application with a three-screen setting compris-
ing a complex working environment. The results of the ex-
periment have been positive. They have revealed the need
for users to be aware of changes through subtle notifica-
tions. Otherwise, essential information could be uninten-
tionally missed due to the complexity of these real-world
tasks. AwToolkit has also been evaluated from the develop-
ers’ point of view. Twelve developers implemented an ap-
plication using AwWidgets. The evaluation with developers
demonstrated that AwToolkit is easy to develop with due to
its similarity with other standard user interface controls.

6. REFERENCES)

[1] B. Arnrich, O. Mayora, J. Bardram, and G. TrAf{ster.
Pervasive healthcare, paving the way for a pervasive,
user-centered and preventive healthcare model. Methods
of Information in Medicine, 1:67-73, 2010.

[2] A. Bezerianos, P. Dragicevic, and R. Balakrishnan.
Mnemonic rendering: An image-based approach for
exposing hidden changes in dynamic displays. In UIST
2006 Conference Proceedings, pages 159-168, 2006.

[3] J. Dostal, P. Kristensson, and A. Quigley. Subtle
gaze-dependent techniques for visualising display
changes in multi-display environments. In 18th ACM
International Conference on Intelligent User Interfaces
(IUI 2018) Conference Proceedings, pages 137-147,
2013.

[4] J. Garrido, V. Penichet, and M. Lozano. Ubidhealth:
Ubiquitous system to improve the management of
healthcare activities. In Pervasive 2012 Conference
Proceedings, 2012.

[5] C. Gutwin and S. Greenberg. Descriptive framework of
workspace awareness for realtime groupware. Computer
Supported Cooperative Work, 11:411-446, 2002.

[6] J. Hill and C. Gutwin. The MAUTI toolkit: Groupware
widgets for group awareness. Computer Supported
Cooperative Work, 13:539-571, 2004.

[7] R. Madeira, O. Postolache, N. Correia, and O. Silva.
Designing a pervasive healthcare assistive environment
for the elderly. In UbiComp 2010 Conference
Proceedings, 2010.

[8] M. Pichiliani and C. Hirata. Teleeye: An awareness
widget for providing the focus of attention in
collaborative editing systems. In CollaborateCom 2008
Conference Proceedings, pages 258-270, 2008.

